Interpreting Autonomous Driving Corner Cases: A Visual Analytics
Approach

Yi Sun* Zekai Shao’ Xingyu Qiu*
Fudan University Fudan University Fudan University
Dong Sun **
NIO, Shanghai

Fudan University

Yun Li® Linbing Xiang'

Fudan University

Ting Liul
Fudan University
Siming Chen **

Fudan University

. Case Analysis Tool for Autonomous Driving

Metric View 1 Normalized Metrics. +1
Timestamp.
T2 0) » P w0 w " w o

Velocity

Decision-making Pipeline

10:12033 |id: 12028 | id: 12016 id: 12003
043 |055 0437 0.468

e e vt

®

Case

Metric dsteering 5 bproaching object 12059 is tracked by the perception modu

Value 0.06382978707551956

. ‘g
id: 12028
decision: NORMAL

Timestamp 12
>
Module @ Localization @ Perception Control @ Control
The a le. The system starts to release the throttle % ystem decides to tur the steering to the ight ~ The system applies slight braking
“

Environment View

Localization Tab.

®

Figure 1: The Interface of the Visual Analytics System: A Metric View for detecting periods with unexpected behaviors; B Environment
View for the users to reproduce and locate themselves in the cases; C The overall decision-making pipeline of the autonomous
driving system, which contains five main modules; D The module tab of the module interested with the button to enable/disable

differential mode E The interface for recording observations.

ABSTRACT

With the progression of artificial intelligence, there has been substan-
tial advancement in autonomous driving technology. However, even
the most advanced systems may confront failures in certain corner
cases, necessitating enhanced analytical approaches. Traditional
approaches focused on the numerical analysis of isolated sensor
data, are often insufficient for deriving meaningful insights in such
situations. To address this inadequacy, we propose a visual analyt-
ics approach, crafted to aid domain experts in performing analyses
and extracting system improvements from cases with unexpected
behaviors. This approach intricately integrates extensive driving

*e-mail: 21307130094 @m.fudan.edu.cn
fe-mail: 23110980017 @m.fudan.edu.cn
fe-mail: 20307140026 @ fudan.edu.cn
$e-mail: yunli27@qq.com
fe-mail: 21210980053 @m.fudan.edu.cn
le-mail: xlinbing@gmail.com
**e-mail: dong.sun@connect.ust.hk
fe-mail: simingchen3@ gmail.com (corresponding author)

scenarios and low-level module behaviors into the autonomous driv-
ing decision-making process, utilizing rich visualizations and an
interface for interactive exploration and systematic synthesis of find-
ings. Uniquely, our system opens the “black box” of modules in the
decision-making pipeline during corner cases, taking into account
both the overall decision-making pipeline and the fine-grained be-
haviors of the modules in the pipeline, setting our approach apart
from previous works. To validate our system’s effectiveness, we
perform two case studies, inviting domain experts for evaluation,
and the results confirm our system’s efficacy in allowing experts to
obtain crucial insights into autonomous driving systems.

Index Terms: Visual Analytics—Data Visualization—Interactive
Visualization; Autonomous Driving—AD Simulations—Corner
Cases

1 INTRODUCTION

Autonomous driving, which relies on advances in machine learning
and deep learning technologies, has significantly improved people’s
quality of life by saving the trouble of physically maneuvering the
car, making the whole driving process more convenient. State-of-the-
art autonomous driving systems, such as Baidu Apollo [35], Tesla
Autopilot [37], and Waymo Driver [41], have demonstrated impres-
sive performance in real-world driving tests. While autonomous driv-
ing systems easily solve most cases, rare and difficult-to-document

corner cases do occur. These corner cases can result in unexpected
behaviors from autonomous driving systems, potentially causing
serious traffic incidents and endangering lives. Therefore, experts
in the field should analyze and evaluate corner cases with unex-
pected behaviors to derive suggestions for developing more robust
autonomous driving systems.

To enhance autonomous driving systems, several approaches have
been proposed. Hou et al. [15] divided the autonomous driving
system into multiple modules for evaluation. This approach allows
users to evaluate the system’s performance using numerical scores,
but it lacks the ability to analyze the internal workings of the modules
qualitatively. This limitation prevents a detailed analysis of the
system. Meanwhile, Wang et al. [40] and Gou et al. [13] proposed
two visual analytics approaches to analyze the perception module of
an autonomous driving system. However, the practical application
of these approaches is limited because they disregard the interplay
between the perception module and other modules. The approaches
mentioned above all face challenges in finding a balance between
the overall decision-making pipeline and the internal workings of
the modules within the pipeline. In cases of unexpected behaviors,
the modules in the decision-making pipeline of an autonomous
driving vehicle typically work together as a whole. Consequently,
the effectiveness of these approaches in industrial workflows is
undermined. In the process of consulting with domain experts, they
also mentioned that common approaches adopted in the industrial
sector involve analyzing data and logs from standalone modules or
simulating specific scenarios, which typically operate without visual
interfaces. These approaches are not satisfactory due to their lack of
clarity and abstract nature.

Therefore, we propose a visual analytics approach that addresses
the limitations of previous work. This approach enables experts to
gain insights into the internal workings of specific modules within
the decision-making pipeline, while also maintaining an understand-
ing of the broader context. Based on the expert reviews and feedback,
domain experts concur that applying this approach can effectively
bridge the gap between raw case data and module-specific analysis.

Our contribution can be summarized as follows:

* A visual analytics approach supporting analysis and eval-
uation of cases with unexpected behaviors: We design a
workflow for visual analytics of cases with unexpected behav-
iors. A visual analytics system that focuses on analyzing the
internal workings of the modules and maintaining the over-
all context of the decision-making pipeline is proposed. This
approach can assist domain experts in gaining insights for de-
veloping and improving algorithms for autonomous driving
systems.

* Case and expert studies demonstrating the usability and
efficiency of our system: We perform two case studies and
an expert review to evaluate the accuracy and efficiency of our
system. The results show that our system can help domain
experts derive insights accurately and efficiently.

2 RELATED WORK

In this section, we review some related work on autonomous driving.
The topics covered include the main approaches to autonomous
driving, visual analytics for autonomous driving, and evaluation
methods for autonomous driving.

2.1 Autonomous Driving and Main Approaches

Currently, autonomous driving is gaining more and more attention
as an important application of machine learning and deep learning.
Yurtsever et al. [45] discussed the challenges faced by autonomous
driving, and summarized the system components and architectures,
as well as core modules including localization, mapping, perception,
planning, and human-machine interfaces. They also divided the
implementation of design philosophies into two main approaches:
end-to-end and modular.

End-to-end approaches usually use machine learning models
in the form of a black box with sensory data as input to generate
acceleration and steering commands as output [33]. There are two
main types of end-to-end driving models, one based on imitation
learning [3,9, 10,27] and the other based on deep reinforcement

learning [17, 18,26, 30]. The former relies on machine learning
of drivers’ behavior to train a model, while the latter builds and
improves a model by exploring and refining a policy from scratch.
End-to-end approaches are very promising due to their low cost, sim-
plicity, ease of implementation, and ability to avoid the bottleneck
of the human factor [33]. However, these approaches have one fatal
weakness: interpretability [8]. With little output during processing,
it is almost impossible to trace the cause of an error after obtaining
an incorrect result. Recent studies have made progress in improving
model interpretability through visual saliency [5,19,20] and interme-
diate representations [2,7,31]. However, when compared to modular
approaches, end-to-end approaches still lack interpretability.

Modular approaches break down autonomous driving systems
into multiple modules, including localization, perception, prediction,
planning, and control [11]. Typical pipelines [1,6,21,38,42] use
raw sensor data as inputs for localization and perception modules.
Their outputs are then transferred to prediction and planning mod-
ules. Finally, the control modules generate commands to operate
the autonomous vehicle. These pipelined approaches are highly
interpretable and allow users to identify the modules associated with
the occurrence of an error in case the system fails. As a result,
developers are spared the trouble of identifying where the problem
lies and can focus on specific sub-tasks such as object detection
and route planning. However, rules for modular systems are usually
human-made, and there are drawbacks to these approaches because
human-made rules are limited, and the systems cannot automatically
learn and discover new driving rules.

After comparing the two types of approaches, we decided to use
the modular approaches as the basis for our study. This is because
they are widely adopted in the industry sector, and the decision-
making pipelines are more explicit and easier to explain. In contrast,
the end-to-end approaches have only been tested on a relatively
small scale and have yet to be implemented in urban settings [45].
Apollo [35], proposed by Baidu, is a modular simulation platform
including various driving scenes. The data input and output for
each module is extensive, making it suitable for analyzing decision-
making processes in cases with unexpected behaviors.

2.2 Visual Analytics for Autonomous Driving

In recent years, visual analytics approaches have been applied to
the field of autonomous driving. Some approaches focus on the
overall system. Hou et al. [15] first proposed a visual analytics
approach to evaluate the autonomous driving system and offered
dynamic scores of each module according to the time. Jamonnak
et al. [16] developed a geo-context aware visual analytics system
to better study the vision-based autonomous driving models and
large-scale spatial video data. Other approaches focus on specific
modules. He et al. [14] used visual analytics methods to diagnose
and improve the accuracy and robustness of semantic segmentation
in driving scenes by integrating representation learning and adver-
sarial learning to obtain actionable insights. Gou et al. [13] instead
focused on traffic light detection to help ensure the safety of critical
functions in autonomous driving with a human-friendly interface.
Wang et al. [40] aimed to help developers analyze failures in object
detection models of the perception module.

However, current explorations of visual analytics approaches in
autonomous driving typically rely on single or multiple standalone
modules, ignoring the relationships between the data flow of the
decision-making pipeline. Furthermore, they seldom target specific
cases with unexpected behaviors. Our work aims to bridge this gap
by enabling domain experts to analyze the decision-making process
of autonomous driving systems and the internal workings of the
modules on the pipeline.

2.3 Evaluation for Autonomous Driving

Several evaluation approaches have been proposed to assess the per-
formance of autonomous driving systems. Evaluation benchmarks
are calculated based on observed metrics.

Some approaches aim to evaluate specific modules in autonomous
driving systems. Zhou et al. [46] proposed a method to assess the
semantic segmentation robustness of autonomous driving systems.
They used metrics computed based on the driving environment to
evaluate the perception module for specific tasks. To evaluate the
risk of the candidate decision sequences provided by the planning

module, Xu et al. [43] developed a risk assessment function that con-
siders various factors to determine the optimal choice. Despite their
effectiveness and efficiency, the collaborations between modules in
the decision-making pipeline are disregarded.

To consider the influence between modules, several alternative
approaches have been proposed to evaluate the overall performance
of autonomous vehicles. Meng et al. [24] proposed an evaluation
scheme that uses the information entropy method to assess the in-
telligence of autonomous driving cars. This scheme focuses on key
scenarios such as intersections, car-following, and obstacle avoid-
ance. Also, Dong et al. [12] developed an evaluation scheme that
combines gray correlation analysis with improved Analytic Hierar-
chy Process (AHP) [39] to assess the U-turn behavior of autonomous
driving cars. However, both approaches lack explainability in the
decision-making process and universality in handling new scenarios.
Following these two approaches, Hou et al. [15] enhanced the purely
quantitative approaches with a visual evaluation approach. This
approach allows domain experts to interactively analyze the scores
and contributing factors of different modules in an autonomous driv-
ing system. However, their system only considers some overall
driving metrics and lacks explainability of the internal workings of
the modules. Thus, it is questionable whether their work can effec-
tively handle complex real-world cases with unexpected behaviors,
and accurately connect the case data to further analysis of specific
modules.

Our approach offers features for qualitatively evaluating the inter-
nal workings of specific modules in the decision-making pipeline of
autonomous driving systems while maintaining the context of the
overall system. By striking a balance between the internal work-
ings of the modules and the overall autonomous driving system, we
can bridge the gap between the case data and the improvements of
specific modules.

3 OVERVIEW

In this section, we describe the modules of the autonomous driving
system and use Apollo [35] as an example. Considering the pipeline
schema derived in [33], which has been widely adopted in both
academia and industry, we extract the five basic modules of Apollo:
Localization, Perception, Prediction, Planning, and Control to ensure
generality. Based on the common structure and functionality of the
modules of autonomous driving, we summarize the information
needed to be included in the visual analytics system and derive
design requirements together with domain experts.

3.1 Modules in Apollo

Apollo is an advanced simulation platform of the modular au-
tonomous driving system that provides input and output data for
each module and has a detailed description of all modules, including
functionality, input, and output formats. The entire system consists
of the following modules: Audio, Canbus, Control, Dreamview,
Localization, Perception, Planning, Prediction, Routing, and Story-
telling. To ensure generality, we extract a basic pipeline for modular
autonomous driving from Apollo based on the following considera-
tions:

Audio detects the siren sound of the active emergency vehicle,
which can be seen as part of Perception. Canbus accepts and exe-
cutes commands from and sends the car’s chassis status to Control.
The entire process can be regarded as internal processing, which is
why we have combined the two into a single control module. Rout-
ing generates high-level navigation information based on requests
about the start and end location, which is then sent to Planning as in-
put. The tasks of Routing are preparations for Planning and can also
be considered as part of it. Dreamview provides a web application
that visualizes the output of other relevant modules. Storytelling is
a scenario manager for complex scenario packaging. The last two
modules are add-on modules to the system and have little to do with
the visual analysis of the decision-making process, so they are not
included in our research.

In summary, the whole system is re-divided into 5 modules: Lo-
calization, Perception, Prediction, Planning, and Control. Some
simplifications are also made to hide Apollo-specific components in
order to ensure generality.

Localization produces an object instance of the autonomous driv-
ing car based on sensor inputs. The instance includes details on the

location, velocity, acceleration, and steering data of the autonomous
driving car.

Perception detects, classifies, and tracks obstacles. Perception
combines information from Localization and environment features
and outputs obstacle tracks with heading, velocity, and classification
information.

Prediction studies and predicts the behavior of obstacles detected
by Perception. Besides obstacle information, this module’s input
contains localization information from Localization and planning tra-
jectory of the previous computing cycle from Planning as. Obstacles
annotated with predicted trajectories are then given.

Planning calculates the travel routes of the autonomous driv-
ing car. With Routing combined into it, Planning aims to achieve
satisfactory results, namely, a collision-free and comfortable trajec-
tory. The priority notations of the obstacles (’ignore”, “caution”,
“normal”) are also produced to support decision-making.

Control generates a comfortable driving experience based on
the planning trajectory. Car’s status from Canbus and Localization
helps refine the output as well. Finally, control commands including
steering, throttle, and brake are sent to the chassis.

We discussed the revision and simplification with domain experts.
They consider the revision to be reasonable, as it is a universal model
adopted by the industrial sector. The simplification is also necessary
because the decision-making pipeline’s architecture is flexible in real-
world road tests, and simplifying it prevents unnecessary confusion.

3.2 Design requirements

During the approximately one-year long development process of
the proposed approach and system, we consistently engaged in
discussions with three domain experts based on our development
progress. These experts are data analysts from a leading electric ve-
hicle company in China, which has invested substantial resources in
autonomous driving. E1 and E2 are 28 and 31 years old, respectively.
They both work as autonomous driving planning and control data
analysts. E3 is 30 years old and is an autonomous driving planning
and control algorithm engineer. We iterated our approach and system
based on feature requests and improvement suggestions provided by
these experts. By summarizing the feature requests and improvement
suggestions, we derive the following design requirements:

¢ R1: Scene Reproductivity The system needs to be capable
of reproducing the scene where the unexpected behaviors oc-
curred. First, it is important for domain experts to comprehend
the situation at hand.

¢ R2: Architecture Transparency The system should demon-
strate the underlying decision-making pipeline of autonomous
driving systems. The architecture of the system should be
accessible to experts performing analysis into the system.

¢ R3: Module Analysis The system needs to be able to provide
information on the internal workings of the modules in the
decision-making pipeline so that domain experts can propose
helpful module-wise suggestions for developing and improving
algorithms.

* R4: Derivative Calculation The system should support the
calculation of derivatives for driving metrics, such as accel-
eration, brake percentage, steering percentage, and so on. In
the workflow of domain experts, it is common to calculate
the derivative of certain driving metrics in order to generate
detailed observations.

¢ RS5: Observation Organization The systems should support
the logical organization of observations. Analysis of cases
can be complex at times, so domain experts need to organize
observations in a logical manner.

4 METHOD

In this section, we detail the data processing and illustrate the ap-
proach we adopt to calculate the object’s importance in the percep-
tion module. System implementation is mentioned to help clarify
the architecture.

Table 1: Evaluation factor with its description and criteria

Factor Description Evaluation Criteria
Dist, Lateral distance from object to the ego-vehicle The smaller the absolute value, the better
Dist, Longitudinal distance from object to the ego-vehicle The smaller the absolute value, the better
Dist Euclidean distance from object to the ego-vehicle The smaller the value, the better
Volume Volume of the object The Targer the value, the better
SpeedRisky Risk measurement on lateral collision between object and ego-vehicle The Targer the value, the better
SpeedRisky | Risk measurement on Iongitudinal collision between object and ego-vehicle The larger the value, the better

4.1 Data Processing
4.1.1 Exporting Data from Apollo

As mentioned in Sect. 3.1, Apollo divides the system into several
modules, which communicate with each other through the Robot
Operating System (ROS). Additionally, Apollo uses Cyber RT as the
messaging middleware for transmission. While running the system,
users can input cyber channel commands to see what channels are
receiving or sending data and the specific information. However, the
data in merely one channel during a signal running process is already
quite large, increasing the difficulty of data analysis. Fortunately,
the Dreamview module of Apollo collects and aggregates data from
other modules and transfers it via WebSocket to the front end for
visualization and data analysis. We use WebSocket messages to
capture and extract the overall data received at the front end and
download it locally for detailed analysis of each module’s input and
output data.

4.1.2 Data Summarization and Selection

After exporting the data from Apollo, we begin selecting data. Con-
sidering that our design requirements focus on evaluating the deci-
sions made by the autonomous driving car in cases with unexpected
behaviors and that the approach and system should not be limited to
Apollo, we select metrics that are suitable for analyzing the decision-
making pipeline and are universal enough to be observed on other
platforms. The selected data comprises content from consecutive
timestamps, each centered on an autonomous driving car. The data
instances include the car’s location, represented by its heading (mea-
sured in radians from a base direction) and coordinates (positionX,
positionY), indicating an offset from a specific location. Addition-
ally, the dataset encompasses the car’s dimensions (length, width,
and height in meters), its speed (velocity in m/s and acceleration in

m/ s%), and control settings (throttle, brake, and steering, recorded
as percentages). The size of the autonomous driving car remains
the same, so we choose not to put it in the dynamic Pipeline View.
GPS (location) and IMU (speed) information is finally integrated
into the autonomous driving car entity, so we display the dynamic
GPS and IMU information as the internal knowledge of the lo-
calization module. Objects detected in the current timestamp are
placed in the object entity (object), including details of id, type, and
location (heading/positionX/positionY), which are summarized as
self-information. Predicted trajectories of the detected objects calcu-
lated by the prediction module are also stored in the corresponding
entity. The in-depth planning data provided by Apollo contains the
results of internal algorithms, which manifestly illustrate the calcu-
lation process. However, this part contains mathematical content
that may make our system way too complex, thus increasing the
difficulty of interpretation for domain experts. As a result, we decide
to use only the planning module’s intermediate decision, as well as
the output planning trajectory.

4.2 Modeling Object Importance

Objects can have a significant impact on the internal operations of
modules in the decision-making pipeline. For example, the percep-
tion module assesses different characteristics of objects, such as
their positions, shapes, and velocities. The prediction module pre-
dicts the future paths of these objects. However, due to algorithmic
imperfections, modules may occasionally respond poorly to objects
that human drivers consider important [22,28,40]. Therefore, it is
essential to model the significance of objects to enhance module
explainability and facilitate the analysis of the internal workings of
the modules.

There are only a few papers studying the importance of objects
on the road. Ohn-Bar et al. [25] utilized human-centric object impor-
tance annotations from the KITTI dataset and extracted spatiotem-
poral features to model the importance of on-road objects. The
study reveals a correlation between object importance and factors
such as object height, relative velocity, and Euclidean distance from
the vehicle. Additionally, the article implies that the lateral and
longitudinal distances between the object and the ego-vehicle hold
different significance in measuring importance. Lotz et al. [23] used
kinematic variables, including lateral and longitudinal distance, as
well as relative lateral and longitudinal velocity, to measure object
importance. In Apollo, object priorities are categorized as ignore,
normal, or caution by the planning module.

In our visual analytics system, we propose a quantitative defi-
nition of importance to distinguish important objects in complex
scenes. Since there is no general or standard method for defining
object importance, we select appropriate metrics and design an al-
gorithm to measure the importance of on-road objects based on the
evaluation method proposed in [15]. Throughout the algorithm de-
velopment process, we also consider the suggestions of experts. The
algorithm receives high recognition from experts in the Sect. 6.2.
We use the Technique for Order Preference by Similarity to an Ideal
Solution (TOPSIS) [29] to convert selected metrics into scores and
then apply the Analytic Hierarchy Process (AHP) [39] method to
determine the weight of each score. We define the object importance
as the weighted sum of the scores. The evaluation factors are present
in Table. 1.

4.3 Modeling Trajectory Similarity

In autonomous driving systems, the planning module plays a pivotal
role. For each timestamp, this module drafts a planning trajec-
tory based on information from upstream modules. This trajec-
tory is represented as an array of coordinates, given in the format
[(float, floar)).

To ensure consistency and smoothness in driving decisions, it’s
essential to track how these trajectories evolve. To achieve this, we
employ the Dynamic Time Warping (DTW) algorithm [4], which
is a crucial and highly effective algorithm for aligning temporal
sequences, significantly enhancing the accuracy and adaptability
of trajectory analysis in various applications. DTW measures the
similarity between two sequences, which, in our context, are the
planning trajectories from consecutive timestamps.

Specifically, the process commences by forming a distance matrix
M, with each element M[i, j] computed as the Euclidean distance
between the i-th coordinate of the previous timestamp’s trajectory
Tprev and the j-th coordinate of the current trajectory Teyr. To
grasp the holistic trajectory alteration, an accumulated cost matrix
D is derived. The initial element is set as D[0,0] = M[0,0], and
subsequent entries are populated using the relation: D[i, j] = M[i, j] +
min(D[i — 1, j],D[i, j— 1],D[i — 1, j — 1]). The culmination of this
process rests in the identification of the optimal warping path—a
sequence linking the top-left to the bottom-right of the matrix D,
embodying the smallest accumulated distances. The DTW score,
our primary metric for trajectory divergence, is then extracted from
D[npre\,7 Neurr), offering a quantified representation of the trajectory
adjustments between successive timestamps.

By comparing the planning trajectory of the previous timestamp
with the current one using DTW, we can quantify the extent of
changes made by the autonomous vehicle to its route. A higher
DTW score indicates a higher degree of deviation, implying that
the vehicle has made significant modifications to its planned path.
This insight aids in assessing the reliability and adaptability of the
Planning module.

® @

Collect Raw Case Data

Navigate to periods with abnormal metric values

® @

Inspect the driving scene Explore the decision-making pipeline of the system

Timestamp: 0 Timestamp: 1 o
Velocity: ... Velocity: ...

Acceleration: ... Acceleration: ...

PlanningTrajectory: ... | |PlanningTrajectory: .. [*** |~ 1

Objects: ... Objects: ...
Brake: ... Brake: ...

@ Explore the specific modules

@ Record the observations

...... Differential Mode
-

Timestamp 12

Module Localization

Metric dSteering

Value 0.06382978707551956

<«— | AHP/TOPSIS

Gol—|

Figure 2: Workflow of the System: 1 Collection and Importation of time-series raw case data from the autonomous vehicle into our system; 2
Examination of the Metric View to identify and navigate to periods of potential unexpected behaviors; 3 Utilization of the Environment View for
a 3D overview of the driving scene within identified periods; 4 Exploration of module summaries within the Decision-Making Pipeline View; 5
Exploration of the internal workings of specific modules by clicking on any of the five modules; 6 Documentation and systematic organization of

observations within the Case View.

4.4 Implementation

The data we use is from the modular autonomous driving system
Apollo. First, we download the input and output of each module
from Apollo and use Python to process the data, including extracting
the input/output suitable for visualization and then corresponding
them according to the re-divided system modules to get the final
data.

The front-end interface of the system uses JavaScript as the de-
velopment language and React.js as the basic framework. JavaScript
libraries such as D3.js and Apache ECharts are used for visualization.
To improve comprehensibility and operability, we also use the Ant
Design UI component library to beautify the system.

5 VISUAL ANALYTICS SYSTEM

In this section, we present the proposed workflow for analyzing
the overall decision-making pipeline and the internal workings of
the modules. We also introduce the design and usage of the visual
analytics system.

5.1 Workflow

We propose a workflow for analyzing cases with unexpected behav-
iors using our system (Fig. 2).

The time-series raw case data is collected from the autonomous
vehicle and imported into our system (Fig. 2-1). Once the data is
prepared, we examine the Metric View (Fig. 2-2) to identify and nav-
igate to the periods exhibiting potential unexpected behaviors. A 3D
overview of the driving scene can be obtained using the Environment
View when within one of these periods (Fig. 2-3). Summaries of the
modules are illustrated in the Decision-Making Pipeline View, encap-
sulating the overall context of the decision-making pipeline within
the autonomous driving system (Fig. 2-4). By clicking on any of the
five modules, one can delve into the internal workings of the specific
modules (Fig. 2-5). Two sets of algorithms, namely AHP/TOPSIS
and DTW, are employed to aid experts in conducting analyses within
modules. During this exploration, experts can document their obser-
vations in the Case View (Fig. 2-6) and systematically organize the
observations along a timeline.

5.2 Metric View

As explained by the experts, the collected time-series case data
consists of both normal behaviors and rare unexpected behaviors
under corner cases. In order to identify these rare unexpected be-
haviors, which include increased braking, sharp steering turns, rapid
decreases in velocity, and more, we utilize a horizon chart (Fig. 1-
A2), through which domain experts can navigate to the time periods
that exhibit unexpected behaviors.

A horizon chart is a compact visualization of time series data,
which is especially useful for identifying and comparing trends. Fig-
ure 3 demonstrates the process of constructing a horizon chart. The
horizontal axis represents timestamps, while the vertical axis indi-
cates the normalized driving metrics. We normalize these metrics
due to the significant differences in their scales—for instance, com-
paring the percentage of brake application to the velocity of the car.
This normalization ensures a consistent and meaningful comparison
across various metrics. In this context, the chart displays the driving
metrics of an autonomous vehicle, including acceleration, brake,
heading, steering, throttle, and velocity. These metrics are arranged
alphabetically and presented in a vertically stacked format. This
type of chart enables the quick identification of rare and unexpected
behaviors that are indicated by extreme metrics. Furthermore, it
allows for the collective comparison of multiple metrics, thereby
providing a deeper insight into the behaviors.

There are multiple design alternatives available for the horizon
chart, but none of them are effective in identifying significant mo-
ments. A line chart, although simple, can become visually over-
whelming when displaying 8 metrics at once. In addition, using
various units of measurement for each metric may lead to confusion.
Similar problems may arise when utilizing parallel coordinates [44].

A slider (Fig. 1-Al) is positioned above and aligned with the
horizon chart. Users can slide the slider to navigate to periods
exhibiting unexpected behaviors and analyze the decision-making
pipeline and specific modules associated with those cases.

Metric View allows the users to identify periods when there are
cases with unexpected behaviors. This enables further analysis of
the autonomous driving system.

Figure 3: Procedures for Constructing a Horizon Chart: 1. Initial
Stage: Original line chart representing time series data. 2. Band
Division: Line chart segmented into bands of equal height. 3. &
4. Final Assembly: Overlaying and aligning of bands to form the
Horizon Chart, with the bottom of each band aligned with the x-axis.

5.3 Environment View

Inspired by the visual structuring mechanisms provided in [32], we
designed an Environment View(Fig. 1-B) as an establishing shot.
The Environment View helps the domain experts locate themselves
in the complex driving scenes (R1).

The Environment View is a 3D simulation of driving scenes that
displays the autonomous driving car and the surrounding objects
while maintaining the geographic context. We achieve this by mi-
grating the 3D view from the Dreamview module of Apollo. After
navigating to the desired timeframes in the Metric View, domain
experts can gain a basic understanding of the situation from the
Environment View.

Some other solutions were considered, but none of them could
efficiently maintain the geographic context of the driving scenes.
For instance, we tried the streetscape.gl [34] toolkit, but it could not
visualize the lanes and traffic lights. The geographic information
derived from the Apollo system can only be visualized through
Dreamview.

5.4 Decision-making Pipeline View

To ensure the overall context of the autonomous driving system
during the later analysis of specific modules in the pipeline (R2), we
design a Decision-making Pipeline View (Fig. 1-C). The structure of
the pipeline follows the schema proposed in [45] and the architecture
of Apollo. This view provides summary views of the five modules
(Localization, Perception, Prediction, Planning, and Control) that
can be clicked on for further exploration using the module tabs.
The selection and basic descriptions of module-specific information
presented in this view is based on Section 3.1.

Localization: Based on the analysis in Section 3.1, the data in the
Localization module can be further classified into two types: Speed
and Location (Fig. 1-C1). Speed includes real-time information on
velocity and acceleration. Location shows the heading of the car and
the coordinates on the X and Y axes. The driving path is visualized
below the Speed and Location block. We visualize the driving path
by connecting the current point (brown) with the following five
consecutive points (light blue) using a directed line. Alternatives
involving geographic context might duplicate the Environment View
and make it too complex for experts to inspect.

Perception: As discussed in Section 3.1, the perception module
is responsible for detecting objects in the current driving scene. To
aggregate the importance and types of all detected objects, we use
a treemap (Fig. 1-C2) that utilizes size and color encoding. The
size of the cells encodes the importance of the objects, which can
be derived using the algorithm introduced in Section 4.2, while
the color encodes the types of the objects. More metrics of the
objects, such as heading, velocity, and position, are presented in the
detailed module tab, which will be introduced later. Using design
alternatives like bar charts may not effectively utilize available space
and aggregate objects of the same type.

Figure 4. The Module Tabs: A Perception tab which contains a
navigation bar (A1) and a line chart (A2) that displays the selected
metric of the object; B Prediction tab which aggregates the predicted
trajectories of the object; C Planning tab which utilizes DTW (Dynamic
Time Warping) to determine moments with sharp changes in planning;
D Control Tab which displays line charts for throttle (D1), brake (D2),
and steering (D3).

Prediction: This part (Fig. 1-C3) shows the predicted trajectories
of objects in the environment that can be generated by the algorithm
of the prediction module in the scene. To inspect the predictions
over time for a specific object, users can click on the object and
analyze it in the detailed module tab.

Planning: This module (see Fig. 1-C4) is used to check the
decisions made by the algorithm regarding the objects. The planning
decisions are yielded by the underlying planning policies of the
autonomous driving system, which may include the warning level
and the actions to be taken. These decisions are accompanied by
decider tags, viewable by hovering over the points. To improve the
chart’s aesthetics and reduce information duplication, the objects
are placed in their corresponding directions instead of their actual
locations. For example, all objects in the northeast direction of the
car are displayed in the upper right quarter-circle. Additionally, the
length of the arrows encodes the Euclidean distance between the
object and the autonomous driving car. We choose not to visualize
the decisions because, as domain experts suggest, the definition of
decider tags can be highly flexible and complex in industrial practice,
and visualization may not quickly adapt to changes. As discussed
in Section 3.1, this module also provides the planning trajectory of
the autonomous driving car itself, which will be visualized in the
module tab.

Control: The Control module (Fig. 1-C5) provides control in-
formation such as steering, braking, and throttle. The detailed line
charts for these metrics and their derivatives are displayed in the
module tab. We use simple line charts here because control tabs do
not involve multiple metrics. In this scenario, a line chart is clearer
and presents the actual values that experts care about.

5.5 Module Tab

As mentioned in Section 5.4, we can click on the summary views of
the modules to inspect their internal workings. This Summary-Detail
structure sets our work apart from previous approaches that either
concentrate on individual modules or evaluate the overall system at
a highly abstract level, as we discussed earlier. This structure helps
bridge the gap between the raw case data, organized as a holistic
entity, and the detailed analysis of the internal workings of specific
modules (R3).

Localization: During a regular meeting with the domain experts,
they pointed out that the specific metric values are unclear in the
horizon chart, despite its efficiency in identifying and comparing
trends. They emphasized the importance of having access to specific
metric values and their derivatives in industrial practice. To address
this concern, we introduce line charts of the velocity and acceleration
in the Localization Tab (Fig. 1-D). Additionally, the users can view

the derived velocity and acceleration by clicking on the differential
mode button (Fig. 1-D1) (R4).

Users can examine the precise value of the metrics by hovering
over the data points in the line chart. Compared to design alternatives
such as parallel coordinates, line charts are more intuitive and clear
for visualizing simple metrics like velocity and acceleration.

Perception: After visualizing the importance and types in the
summary view, the perception tab presents additional metrics such
as heading, velocity, position, and others. Users can explore the
metrics of a specific object by simply clicking on it in the prediction
module of the Decision-Making Pipeline View. In the Prediction Tab,
users can select a metric (importance, heading, velocity, APositionX,
APositionY) from the navigation bar (Fig. 4-A1) for the clicked
object. By examining the line charts (Fig. 4-A2) of the selected
metrics over time, users can gain a comprehensive understanding of
the environments and the objects.

Prediction: During the initial phases of system design, experts
recommended evaluating two aspects of the prediction module to
gain insights into its internal workings. The first aspect involves
comparing predictions across different objects, while the second
aspect involves comparing predictions of a specific object over time.
In response to this suggestion, we designed an interaction that allows
users to view all predicted trajectories of the objects. Additionally,
users can select a specific object to inspect the predictions generated
by the system’s algorithm over time.

The real trajectory of the selected object is visualized using a
blue plot line (Fig. 4-B1). Real position points are placed on the
line, with the largest point representing the current position of the
object. Users can hover over any point on the plot line to inspect the
predicted trajectory at that timestamp and compare it with the real
trajectory. The predicted trajectory is visualized with a gray plot line
(Fig. 4-B2) and the predicted position points are placed on the line.

It is important to note that the prediction module cannot accurately
predict the exact trajectories or even intentions of the objects (such
as cutting in or turning left). Therefore, we visualize the density of
the predicted positions over time (Fig. 4-B2) to display all possible
intentions, as well as the most likely intentions.

Planning: At each timestamp, the planning module generates
a planning trajectory for the upcoming moments. In cases with
unexpected behaviors, the planning trajectory may change to avoid
potential dangers. In Section. 4.3, we introduced DTW for detecting
changes in the planning trajectory. The DTW scores over time
are visualized using a simple line chart (Fig. 4-C1), for the same
reason we choose to use simple line charts in the Control Tab as in
Sec. 5.4. Below the line chart, we display a simple chart showing
the two trajectories (Fig. 4-C2). The previous planning trajectory
is represented by a gray plot line, while the current trajectory is
represented by a blue plot line.

Control: Similar to the Localization Tab, we add line charts for
the brake, steering, and throttle in the Control Tab (Fig. 4-D1 D3).
The users can also access the derivatives of the brake, steering, and
throttle.

5.6 Case View

We also include an interface (Fig. 1-E) in our visual analytics system
for recording and organizing the observations derived from using the
system (RS). The observations are presented in a timeline format,
with findings from a specific module sorted by timestamp. Users
can extract findings by clicking on the provided features in the
module tabs. For example, a significant change in planning trajectory
spotted in the Planning Tab can be considered as a finding. The
details of each finding are displayed in the leftmost section of the
Case View (Fig. 1-E1). This includes the current timestamp, the
selected module, the associated metric, and its value. The users are
encouraged to enter additional comments on the findings to better
document the module behavior (Fig. 1-E2). Once the description has
been entered, users can press the stage button next to the description
text box to add the findings to the timeline(Fig. 1-E3). If users need
to recall the staged findings, they can simply press the recall button
located below the stage button.

6 EVALUATION

In this section, we conduct two case studies and collect reviews and
feedback from the experts. In the case studies, we showcase the

aaaaa

nnnnnnn

ssssssss

rrrrrrrr

........

Figure 5: Use Metric View for Unexpected Behaviors Detection: A An
emergency brake between the timestamps 32 and 63; B A back-to-
back turning of steering between the timestamp 100 and 126; C A
set of actions of brakes and sharp turns of the steering between the
timestamp 160 and 186.

utilization of our system in two periods where unexpected behaviors
occurred. In the expert interview, we organize a workshop involving
domain experts to assess the effectiveness of our system.

6.1 Case Study

To showcase the usability of our system in analyzing the decision-
making pipeline in cases with unexpected behaviors, we conducted
two case studies.

The data used for case studies is from Apollo Studio [36]. Among
the various scenes available, we select the data that exhibits the most
significant unexpected behaviors. Specifically, the scene depicts
an autonomous driving car turning left at an intersection and then
continuing straight. Within this scene, two instances of unexpected
braking and steering adjustments occur.

Before diving into the case studies, we first identify periods with
suspected unexpected behaviors using the Metric View.

As shown in Fig. 5, there are 3 periods with suspected unexpected
behaviors:

* Between timestamp 32 and timestamp 63, there is a significant
drop in acceleration, the brake is pressed, and the throttle is
released.

* Between timestamp 100 and timestamp 126, there are 2 turns
of steering.

* Between timestamp 160 and timestamp 186, there is a signifi-
cant drop in acceleration, the brake is pressed, the steering is
turned, and the throttle is released.

We choose to conduct case studies on two out of the three speci-
fied periods (32-63 and 160-186) as these two periods display more
questionable behaviors. Additionally, it is necessary to check a few
timestamps before the period with suspected unexpected behaviors.
This is because the autonomous driving vehicle may experience
delays in its reactions. Therefore, we decide to expand the period to
between timestamps 27-63 and 155-186 respectively.

6.1.1 Case 1: Braking When Crossing Intersection

After navigating to the period 27-63, we begin by using the Environ-
ment View (R1) to locate ourselves in the scene during the braking
event. This view shows that the autonomous driving vehicle is trying
to cross an intersection (Fig.6-A).

Human drivers typically avoid sharp braking while crossing an
intersection because it can increase the chances of a collision in this
complex and hazardous location. Therefore, sharp braking in such
situations can be considered unexpected behavior.

At timestamp 28, we observe an unexpected predicted trajectory
(Fig.6-A2) for an object (Fig.6-Al) located on the left-front side
of our autonomous driving car. This trajectory is generated by the
prediction module of the autonomous driving system. We turn to
the Decision-making Pipeline View to analyze prediction under the
context of the decision-making pipeline (R2). It indicates that the
end of the predicted trajectory appears as a straight line (Fig. 6-B1),
which deviates significantly from the predictions of other objects
shown in the prediction module (Fig. 6-B) in the Decision-making
Pipeline View. Usually, these predictions follow smooth curves and

Prediction

‘‘‘‘‘‘‘‘‘‘‘‘

r——

,,,,,,,,,,,,,,

,,,,,,,,,,,

Prediction overtime
Context for the false prediction

Figure 6: Case 1: In A, an abnormal predicted trajectory is detected, which is further examined in the prediction module in B. The experts assume
that this misprediction is due to high speed, so they check the velocity of the object in C and the overall prediction of the object in D. The control
information and changes in the planning trajectory are further explored in E and F.

a straight segment in the prediction trajectory goes beyond what we
expect.

To further investigate the unexpected predicted trajectories, we
click on the prediction module in the Decision-making Pipeline View.
This allows us to analyze the internal workings of the prediction
module (R3), which aggregates the predicted trajectory for the object
over time.

In Fig. 6-D, the object’s actual trajectory is to drive straight (Fig. 6-
D1), while the autonomous driving system predicts that the object
is likely to turn left, as indicated by the density of the predicted
coordinates in Fig. 6-D2. However, as suggested by the Environment
View at later timestamps, the object stops in front of the intersection
instead of turning left.

Based on the initial observation, it can be concluded that the
prediction module does not perform well when dealing with the
given object. In addition to the observations we have obtained, some
more details are also generated during the free exploration phase of
the expert study.

We then explore the responses to this unexpected prediction gen-
erated by the control and planning module to further understand this
case. By enabling the differential mode (R4) and inspecting the Con-
trol Tab (Fig. 6-E), we can observe that the control mode initiates
a minor brake increase at timestamp 33 (Fig. 6-E1), followed by a
major one at timestamp 35 (Fig. 6-E2). As a result, the autonomous
driving vehicle starts to decelerate.

At the same time as the two brakings, the line chart of the DTW
scores shows a peak at timestamp 34 (Fig.6-F1), indicating a sig-
nificant change in the planning trajectory of the planning module.
The new trajectory (Fig.6-F2) causes the autonomous driving ve-
hicle to deviate slightly to the right from its original path, further
indicating its intention to avoid collision with the object. The rea-
son why the starting points of the previous planning trajectory and
the new planning trajectory are not the same is that if a planning
trajectory doesn’t need to be changed, the planning module saves
the coordinates of the previous planning for future moments and the
control module controls the car following those coordinates until a
new planning is generated.

6.1.2 Case 2: Sharp Steering for a Pedestrian Coming
Through

Similar to the procedures in case 1, we navigate to the period be-
tween 155 and 186. This case is relatively simpler compared to case
1, as it involves only a pedestrian with ID 12059 coming towards the
autonomous driving vehicle, a follower of the autonomous vehicle
with ID 11892, and the autonomous driving vehicle itself (Fig. 7-A).

As suggested in the Localization Tab (R3), the main state of
the autonomous driving car between timestamps 155 and 186 is to

decelerate (Fig. 7-B1). To explain the deceleration, according to the
Control Tab in the differential mode (R4), the control module starts
releasing the throttle at timestamp 158 (Fig. 7-C1), turns the steering
at timestamp 159 (Fig. 7-C3), and presses the brake at timestamp 160
(Fig. 7-C2). This is definitely an unexpected behavior, considering
the autonomous driving vehicle is operating on a straight road with
minimal traffic. These observations are organized logically (R5) and
staged to the timeline(Fig. 1-E3).

The object 12059 is considered the most important object, in
contrast to object 11892, which consistently follows the autonomous
driving car with normal behavior throughout the driving record. We
analyze the object in both the Perception Tab and the Prediction Tab.
As the object approaches the autonomous driving vehicle (Fig. 7-
D), its importance increases. This indicates that the algorithm’s
effect aligns with our expectations. The prediction module generates
multiple predictions with different intentions (Fig. 7-E17E6). This
inconsistency reveals a possible issue with the prediction module:
it is unstable in predicting trajectories for pedestrians. This obser-
vation can be relayed to the engineers, who will conduct further
experiments to replicate the issue.

6.2 Expert Review and Feedback

To evaluate the effectiveness of our system, we invited the domain
experts to provide reviews and feedback.

We offered a workshop that lasted for 90 minutes. The interview
began with a 20-minute tutorial that provided an introduction to the
concepts, system design, algorithms, and how to utilize our system.
This tutorial covered all the features available in the visual analytics
system.

After the tutorial, we demonstrated the usage of our system using
the cases presented in Sect. 6.1. The case demonstration lasted for
15 minutes, followed by a 10-minute QA session where experts
could ask questions.

Afterward, participants could explore the system freely and fur-
ther analyze the cases from Sect. 6.1. The questions and suggestions
from the QA session, as well as feedback from the free exploration,
helped finalize some details of the two cases which we will discuss
soon.

Finally, participants filled in a questionnaire that included ques-
tions regarding workflow, visual analytics systems, and algorithms.

Workflow: The experts needed to qualitatively assess the accu-
racy and efficiency of the work proposed in Fig. 2. The experts
recognized the hierarchy of the Summary-Detail approach and the
unity of integrating standalone modules in the decision-making
pipeline. In particular, one expert considered the interface for record-
ing observations to be an innovation that would greatly enhance
workflow efficiency in analysis.

ia: 12059 11892
o83 0569

Figure 7: Case 2: A Two objects are detected; B The autonomous
driving vehicle primarily decelerates between timestamp 155 and 186;
C: The control module releases the throttle at timestamp 158, turns
the steering at 159, and presses the brake at 160; D: The importance
of object 12059 increases as it approaches; E Unstable predictions
on object 12059.

Visual Analytics System: Experts needed to assess the accuracy
and efficiency of different views qualitatively when used in the ex-
ploration process. In this section, there are ten questions evaluating
the accuracy and efficiency of five views introduced in Sect. 5 (i.e.,
5 views and 2 sub-questions (accuracy/efficiency) per view) where
the experts needed to assign a score between 1 and 5 to evaluate the
accuracy or efficiency of the specific view. The overall accuracy of
the five views is 20.5/25 points on average, while the efficiency is
19.67/25 points. This reflects that the visual analytics system has
a positive effect and can help domain experts analyze unexpected
behaviors accurately and efficiently.

Algorithms: This part includes two questions corresponding
to AHP/TOPSIS and DTW, respectively. Each of the questions
has two sub-questions, one for the rationality and the other for the
efficiency of the corresponding algorithm. Each sub-question is
worth 5 points, as in the Visual Analytics System part.. Rationality
refers to whether the algorithm is suitable for the analysis task,
while efficiency refers to whether the algorithm can help experts
gain insight efficiently. The overall rationality and efficiency scores
for both sets of algorithms are 8.33/10 and 8.67/10 on average,
respectively. One expert commented that You calculate importance
using AHP and TOPSIS, which are approximate methods. This is
a good solution given that you do not have access to confidential
data from the autonomous driving control center” regarding the
rationality of applying AHP/TOPSIS.

In general, the workflow, visual analytics system, and algorithms
received positive feedback from domain experts. This demonstrates
the effectiveness of our approach.

During the free exploration phase, experts proposed some details
of the cases based on their explorations. They suggested that a
possible explanation for the unexpected prediction of the object
in case 1 is that the velocity of the object is too high. To support
this explanation, the experts selected the object and opened the
perception tab (Fig. 6-C). The maximum velocity for the object
exceeds 7m/52, which is abnormal for an object approaching an
intersection. The experts further commented that if the velocity
measurement is accurate, the prediction should be optimized to be
more conservative when dealing with objects in such cases. On the
other hand, if the velocity measurement is inaccurate, the perception
module should be refined to improve the task of measuring object
velocity. For the pedestrian in case 2, the experts suggested that
the behaviors of pedestrians are quite flexible and unpredictable.
The autonomous driving system needs a few timestamps to fully
ensure that the pedestrian does not intend to cross the road. The
improvements for the algorithms should focus on shortening the
time for judging the intention of the pedestrian.

There are some valuable suggestions proposed by the experts that
warrant discussion. However, many of these suggestions are limited
by the availability of data. For instance, one expert emphasized the
importance of map information in autonomous driving systems, stat-
ing, ”The map information is a crucial component of the autonomous
driving system. Whether it is SD map or HD map data, it should be
able to be displayed and presented in the design.” Unfortunately, ob-
taining sensitive information, particularly road data, can be difficult
due to various business and legal considerations. Additionally, in
the perception module of the Decision-making Pipeline View, one
expert wondered, ’Is it possible to further refine this classification?
For example, by having separate categories for trucks or cars within
the "vehicle’ category, or by creating a specific category for SUVs?”
This request is hindered by the limitation of the available data, which
only provides coarse-grained information.

While it is currently difficult to address all of the suggestions due
to limited data availability, it is worth noting that some of them hold
value. For instance, one expert suggested that we can expand the
mathematical features beyond derivatives. This includes calculating
the relative velocity between objects and the autonomous driving
vehicle. Furthermore, incorporating metrics about objects in the
environment can enhance the system’s understanding of how the
autonomous driving system interacts with its surroundings. Addi-
tionally, upgrading the case view to support case replay enables
repetitive analysis of cases for deeper insights.

7 DiscussiON AND CONCLUSION

There are some points worth discussing regarding the approach and
system we propose.

The Metric View (Fig. 1-A) enables domain experts to easily iden-
tify periods with unexpected behaviors. However, this convenience
comes at the cost of concealing the precise values of the metrics.
Nonetheless, these values can be accessed from various Module Tabs
(Fig. 1-D). We can explore methods to integrate the exact values into
the Metric View to eliminate the need for navigating to the module
tabs to obtain them.

The Environment View (Fig. 1-B) provides the geographic context
for the autonomous driving car’s location. The elements in this view
are comprehensive in order to enhance cooperation with other views
in the system. It is worth considering if any elements can be removed
without causing confusion and making the view less cluttered.

The Case View serves as an interface for recording observations,
which is acknowledged by domain experts. Beyond the current
record format, which only contains metrics and their values, we can
extend the supported format for recording. For example, we can
record the density map of prediction points.

Opverall, in this paper, we propose a visual analytics approach that
considers both the internal workings of specific modules and their
context within the overall decision-making pipeline. We showcase
two case studies that demonstrate the usability of our system in ana-
lyzing the autonomous driving system under cases with unexpected
behaviors. Our system also helps in organizing observations that can
be submitted to algorithm engineers for further analysis or algorithm
improvement.

ACKNOWLEDGMENTS

This work is supported by Natural Science Foundation of China
(NSFC No.62202105) and Shanghai Municipal Science and Tech-
nology General Program (No. 21ZR1403300), Sailing Program (No.
21YF1402900).

REFERENCES

[1] N. Akai, L. Y. Morales, T. Yamaguchi, E. Takeuchi, Y. Yoshihara,
H. Okuda, T. Suzuki, and Y. Ninomiya. Autonomous driving based
on accurate localization using multilayer lidar and dead reckoning. In
2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC), pp. 1-6. IEEE, 2017.

[2] M. Al-Qizwini, I. Barjasteh, H. Al-Qassab, and H. Radha. Deep
learning algorithm for autonomous driving using googlenet. In 2017
IEEE Intelligent Vehicles Symposium (IV), pp. 89-96. IEEE, 2017.

[3] M. Bansal, A. Krizhevsky, and A. Ogale. Chauffeurnet: Learning to
drive by imitating the best and synthesizing the worst. arXiv preprint
arXiv:1812.03079, 2018.

[4]

[5]

[6

—

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

D. J. Berndt and J. Clifford. Using dynamic time warping to find pat-
terns in time series. In Proceedings of the 3rd international conference
on knowledge discovery and data mining, pp. 359370, 1994.

M. Bojarski, A. Choromanska, K. Choromanski, B. Firner, L. J. Ackel,
U. Muller, P. Yeres, and K. Zieba. Visualbackprop: Efficient visual-
ization of cnns for autonomous driving. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 4701-4708. IEEE,
2018.

A. Broggi, M. Buzzoni, S. Debattisti, P. Grisleri, M. C. Laghi, P. Medici,
and P. Versari. Extensive tests of autonomous driving technologies.
IEEE Transactions on Intelligent Transportation Systems, 14(3):1403—
1415, 2013.

C. Chen, A. Seff, A. Kornhauser, and J. Xiao. Deepdriving: Learning
affordance for direct perception in autonomous driving. In Proceedings
of the IEEE international conference on computer vision, pp. 2722—
2730, 2015.

L. Chi and Y. Mu. Deep steering: Learning end-to-end driv-
ing model from spatial and temporal visual cues. arXiv preprint
arXiv:1708.03798, 2017.

K. Chitta, A. Prakash, and A. Geiger. Neat: Neural attention fields
for end-to-end autonomous driving. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 15793-15803, 2021.
F. Codevilla, M. Miiller, A. Lépez, V. Koltun, and A. Dosovitskiy.
End-to-end driving via conditional imitation learning. In 2018 IEEE
international conference on robotics and automation (ICRA), pp. 4693—
4700. IEEE, 2018.

T. J. Crayton and B. M. Meier. Autonomous vehicles: Developing
a public health research agenda to frame the future of transportation
policy. Journal of Transport & Health, 6:245-252, 2017.

F. Dong, Y.-N. Zhao, and L. Gao. Application of gray correlation and
improved ahp to evaluation on intelligent u-turn behavior of unmanned
vehicles. In 2015 8th International Symposium on Computational
Intelligence and Design (ISCID), vol. 1, pp. 25-29. IEEE, 2015.

L. Gou, L. Zou, N. Li, M. Hofmann, A. K. Shekar, A. Wendt, and
L. Ren. Vatld: A visual analytics system to assess, understand and
improve traffic light detection. IEEE transactions on visualization and
computer graphics, 27(2):261-271, 2020.

W. He, L. Zou, A. K. Shekar, L. Gou, and L. Ren. Where can we help?
a visual analytics approach to diagnosing and improving semantic
segmentation of movable objects. IEEE Transactions on Visualization
and Computer Graphics, 28(1):1040-1050, 2021.

Y. Hou, C. Wang, J. Wang, X. Xue, X. L. Zhang, J. Zhu, D. Wang, and
S. Chen. Visual evaluation for autonomous driving. IEEE Transactions
on Visualization and Computer Graphics, 28(1):1030-1039, 2021.

S. Jamonnak, Y. Zhao, X. Huang, and M. Amiruzzaman. Geo-context
aware study of vision-based autonomous driving models and spatial
video data. IEEE transactions on visualization and computer graphics,
28(1):1019-1029, 2021.

M. Jaritz, R. De Charette, M. Toromanoff, E. Perot, and F. Nashashibi.
End-to-end race driving with deep reinforcement learning. In 2018
IEEE International Conference on Robotics and Automation (ICRA),
pp. 2070-2075. IEEE, 2018.

A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-
D. Lam, A. Bewley, and A. Shah. Learning to drive in a day. In
2019 International Conference on Robotics and Automation (ICRA),
pp. 8248-8254. IEEE, 2019.

J. Kim and J. Canny. Interpretable learning for self-driving cars by
visualizing causal attention. In Proceedings of the IEEE international
conference on computer vision, pp. 2942-2950, 2017.

J. Kim, T. Misu, Y.-T. Chen, A. Tawari, and J. Canny. Grounding
human-to-vehicle advice for self-driving vehicles. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 10591-10599, 2019.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z.
Kolter, D. Langer, O. Pink, V. Pratt, et al. Towards fully autonomous
driving: Systems and algorithms. In 2011 IEEE intelligent vehicles
symposium (IV), pp. 163-168. IEEE, 2011.

J. Liu and J.-M. Park. “seeing is not always believing”: detecting per-
ception error attacks against autonomous vehicles. IEEE Transactions
on Dependable and Secure Computing, 18(5):2209-2223, 2021.

A. Lotz, N. Russwinkel, T. Wagner, and E. Wohlfarth. An adaptive
assistance system for subjective critical driving simulation: under-
standing the relationship between subjective and objective complexity.
Proceedings of the Human Factors and Ergonomics Society Europe,
pp. 97-108, 2020.

K.-W. Meng, Y.-n. Zhao, L. Gao, and H.-c. Tan. Evaluation of the in-
telligent behaviors of unmanned ground vehicles based on information
theory. In CICTP 2015, pp. 410-419. 2015.

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

(34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[40]

E. Ohn-Bar and M. M. Trivedi. Are all objects equal? deep spatio-
temporal importance prediction in driving videos. Pattern Recognition,
64:425-436, 2017.

E. Perot, M. Jaritz, M. Toromanoff, and R. De Charette. End-to-end
driving in a realistic racing game with deep reinforcement learning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 3-4, 2017.

A. Prakash, K. Chitta, and A. Geiger. Multi-modal fusion transformer
for end-to-end autonomous driving. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7077-
7087, 2021.

M. S. Ramanagopal, C. Anderson, R. Vasudevan, and M. Johnson-
Roberson. Failing to learn: Autonomously identifying perception
failures for self-driving cars. IEEE Robotics and Automation Letters,
3(4):3860-3867, 2018.

T. L. Saaty. A scaling method for priorities in hierarchical structures.
Journal of mathematical psychology, 15(3):234-281, 1977.

A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani. Deep reinforce-
ment learning framework for autonomous driving. arXiv preprint
arXiv:1704.02532, 2017.

A. Sauer, N. Savinov, and A. Geiger. Conditional affordance learning
for driving in urban environments. In Conference on robot learning,
pp. 237-252. PMLR, 2018.

E. Segel and J. Heer. Narrative visualization: Telling stories with data.
IEEE transactions on visualization and computer graphics, 16(6):1139—
1148, 2010.

A. Tampuu, T. Matiisen, M. Semikin, D. Fishman, and N. Muham-
mad. A survey of end-to-end driving: Architectures and training meth-
ods. IEEE Transactions on Neural Networks and Learning Systems,
33(4):1364-1384, 2020.

A. S. A. team. AVS streetscape: An open-source 3d autonomous
vehicle and traffic simulation platform. https://avs.auto/
#/streetscape.gl/overview/introduction, 2021. Accessed:
April 1,2023.

B. Team. Baidu Apollo: An open autonomous driving platform. https:
//apollo.baidu.com/, 2021. Accessed: April 1, 2023.

B. Team. Apollo studio. https://apollo.baidu.com/workspace,
2023. Accessed: Oct 2, 2023.

Tesla. Autopilot — tesla. =https://www.tesla.com/autopilot, 2023.
Accessed: Sep 10, 2023.

C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer, et al. Autonomous driving
in urban environments: Boss and the urban challenge. Journal of field
Robotics, 25(8):425-466, 2008.

0. S. Vaidya and S. Kumar. Analytic hierarchy process: An overview of
applications. European Journal of operational research, 169(1):1-29,
2006.

J. Wang, Y. Li, Z. Zhou, C. Wang, Y. Hou, L. Zhang, X. Xue, M. Kamp,
X. Zhang, and S. Chen. When, where and how does it fail? a spatial-
temporal visual analytics approach for interpretable object detection
in autonomous driving. /IEEE Transactions on Visualization and Com-
puter Graphics, 2022.

Waymo. Waymo driver. =https://waymo.com/waymo-driver/?ncr, 2023.
Accessed: Sep 10, 2023.

J. Wei, J. M. Snider, J. Kim, J. M. Dolan, R. Rajkumar, and B. Litkouhi.
Towards a viable autonomous driving research platform. In 2013 IEEE
Intelligent Vehicles Symposium (IV), pp. 763-770. IEEE, 2013.

C. Xu, W. Zhao, and C. Wang. An integrated threat assessment al-
gorithm for decision-making of autonomous driving vehicles. /[EEE
transactions on intelligent transportation systems, 21(6):2510-2521,
2019.

K. Xu, Y. Wang, L. Yang, Y. Wang, B. Qiao, S. Qin, Y. Xu, H. Zhang,
and H. Qu. Clouddet: Interactive visual analysis of anomalous per-
formances in cloud computing systems. IEEE Transactions on Visu-
alization and Computer Graphics, 26(1):1107-1117, 2020. doi: 10.
1109/TVCG.2019.2934613

E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda. A survey of
autonomous driving: Common practices and emerging technologies.
IEEE access, 8:58443-58469, 2020.

W. Zhou, J. S. Berrio, S. Worrall, and E. Nebot. Automated evaluation
of semantic segmentation robustness for autonomous driving. /EEE
Transactions on Intelligent Transportation Systems, 21(5):1951-1963,
2019.

https://avs.auto/#/streetscape.gl/overview/introduction
https://avs.auto/#/streetscape.gl/overview/introduction
https://apollo.baidu.com/
https://apollo.baidu.com/
https://apollo.baidu.com/workspace
=
=

	Introduction
	Related Work
	Autonomous Driving and Main Approaches
	Visual Analytics for Autonomous Driving
	Evaluation for Autonomous Driving

	Overview
	Modules in Apollo
	Design requirements

	Method
	Data Processing
	Exporting Data from Apollo
	Data Summarization and Selection

	Modeling Object Importance
	Modeling Trajectory Similarity
	Implementation

	Visual Analytics System
	Workflow
	Metric View
	Environment View
	Decision-making Pipeline View
	Module Tab
	Case View

	Evaluation
	Case Study
	Case 1: Braking When Crossing Intersection
	Case 2: Sharp Steering for a Pedestrian Coming Through

	Expert Review and Feedback

	Discussion And Conclusion

