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Abstract— Effective chart summary can significantly reduce the time and effort decision makers spend interpreting charts, enabling
precise and efficient communication of data insights. Previous studies have faced challenges in generating accurate and semantically
rich summaries of time-series data charts. In this paper, we identify summary elements and common hallucination types in the
generation of time-series chart summaries, which serve as our guidelines for automatic generation. We introduce ChartInsighter,
which automatically generates chart summaries of time-series data, effectively reducing hallucinations in chart summary generation.
Specifically, we assign multiple agents to generate the initial chart summary and collaborate iteratively, during which they invoke external
data analysis modules to extract insights and compile them into a coherent summary. Additionally, we implement a self-consistency
test method to validate and correct our summary. We create a high-quality benchmark of charts and summaries, with hallucination
types annotated on a sentence-by-sentence basis, facilitating the evaluation of the effectiveness of reducing hallucinations. Our
evaluations using our benchmark show that our method surpasses state-of-the-art models, and that our summary hallucination
rate is the lowest, which effectively reduces various hallucinations and improves summary quality. The benchmark is available at
https://github.com/wangfen01/ChartInsighter.

Index Terms—Chart Summarization, Hallucination, Large Language Model, Benchmark, Time-series Data Visualization

1 INTRODUCTION

Time-series data is widely present across various fields, including
finance [14], energy [50] and manufacturing [57]. This widespread
applicability makes time-series line charts one of the most commonly
used visualization types on the Web [6]. Automating the generation of
time-series chart summaries is crucial for bridging the gap between raw
data and data insights. It enables rapid comprehension, helping readers
identify key insights [26] and improving recall and understanding of
the data presented in charts [20, 29].

Previous studies have utilized Large Language Models (LLMs) to
automate the generation of chart summary, effectively enhancing the
semantic richness of the summary [28, 51, 52]. However, time-series
data, characterized by large volumes, high dimensionality, and complex
variations, requires attention to specific data attributes, which may
not be adequately captured by existing methods. These studies have
primarily focused on basic chart analysis [28, 40], often overlooking
a more in-depth exploration of trend analysis, data relationships, and
detailed reasoning. Moreover, existing research [40, 52] frequently
encounters hallucination issues, such as numerical calculation errors
and incorrect trend judgments, which affect the accuracy and reliability
of the generated summaries, as shown in Fig. 1. Consequently, there
remains a significant gap in research on generating chart summaries
that can both provide a diverse and profound analysis of charts and
mitigate hallucinations.

Creating concise, accurate, and semantically rich time-series chart
summaries with LLMs presents several challenges. Firstly, describing
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multidimensional time-series data requires capturing complex relation-
ships across dimensions and over time. LLMs often lack deep logical
reasoning about data context and the relationships between different
data dimensions [17]. This deficiency can lead to various hallucina-
tions in handling time-series data, significantly affecting the accuracy
and reliability of chart summary. Secondly, analyzing time-series data
necessitates mathematical computations to identify data features and
trends to recognize patterns within the data, where LLMs often fall
short [61]. This limitation makes it even more challenging to extract
valuable insights from time-series data. Thirdly, LLMs organize sta-
tistical indicators such as mean and growth rate which help to better
express the trends and characteristics of the data in summary, however,
the resulting semantics are often isolated and disjointed, lacking the
smooth logical connections needed to form paragraphs with complete
and fluid semantic flow. These challenges highlight the need for en-
hanced capabilities in LLMs to accurately generate chart summaries
that are not only precise but also contextually and semantically enriched.
At the same time, the accuracy and reliability of summary evaluation
have been a long-standing issue. Existing evaluation methods primarily
focus on the semantic richness of the generated summaries [52] and the
similarity between generated summary and gold summary [33]. How-
ever, the existing research lacks investigation into the hallucinations of
time-series chart summaries generated by LLMs.

In this paper, we identify important elements for time-series chart
summary (e.g., key extremum and upward trend), as well as types of
hallucinations in summaries generated by LLMs, such as Trend Di-
rection Error (i.e., misinterpret an upward trend as a downward trend
or the opposite) and Extremum Error (i.e., misjudge the extremum
point as a maximum). To alleviate these hallucinations, we propose a
framework that takes visualization specification and data table as input,
combining external modules, multi-agent iterative collaboration, and
self-consistency test to automatically generate summary. This frame-
work integrates natural language reasoning capabilities seamlessly with
external tools (data analysis modules), combining the analytical power
of language with the computational efficiency of tools to enhance chart
summary. We assign multiple agents to engage in generating initial
version of chart summary and iterative collaboration, during which
they invoke external data analysis modules designed to reduce specific
hallucinations, extract data insights, or compile insights into a coherent
summary. At last, we use a self-consistency test method to validate and
correct our summary, finally arriving at a refined and comprehensive
chart summary. We design an interface that assists users in converting
charts into summaries using our ChartInsighter, in which we imple-
ment an interaction that links text to visualizations, facilitating users to
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Fig. 1: Examples of time-series chart summaries generated with GPT-4, VL2NL [28], and ChartInsighter. Errors are indicated in red text, while correct
points are highlighted in green text. GPT-4 makes an “Extremum Error”, misidentifying 2008 as the peak year instead of the correct year, 2007, and a
“Trend Direction Error”, incorrectly describing a downward trend as an upward trend. VL2NL makes a “Numerical Value Error”, incorrectly calculating
Apple’s average stock price. In contrast, ChartInsighter provides a correct summary.

identify potential hallucinations.
We create a benchmark of 75 pairs of charts and corresponding

summaries including a total of 2693 sentences. For a given chart,
we generate 4 summaries: one gold summary created manually, one
summary generated by ChartInsighter, VL2NL [28], and GPT-4, with
hallucination types annotated at sentence level for all summaries, aim-
ing to evaluate the effectiveness of reducing hallucinations. We develop
evaluations based on our benchmark to validate that our method out-
performs state-of-the-art LLMs, uncovers more data insights, produces
summaries with richer and more effective semantics, and significantly
reduces hallucinations.

Our main contributions are as follows:
• We identify key elements for time-series chart summary and

the types of hallucinations produced by LLMs. These serve as
guidelines to steer the generation of time-series chart summary
by LLMs.

• We propose ChartInsighter to automatically generate time-series
chart summaries utilizing iterative fine-grained multi-agent collab-
oration to arrive at a comprehensive summary. Evaluations show
that our system outperforms state-of-the-art LLMs in generating
chart summary and effectively mitigates common hallucinations
produced in the generation process.

• We create a high-quality benchmark of charts and summaries, with
hallucination types annotated, shedding light on further research
on reducing hallucinations of summary generation.

2 RELATED WORK

Our work builds on prior research on LLMs for visualization, enhanc-
ing reasoning and factual knowledge in LLMs, and LLMs for chart
summarization.

2.1 Large Language Models for Visualization
In recent years, with the rapid development of LLMs, researchers have
begun to explore their potential in the field of visualization [62, 63].
A typical application of LLM4VIS involves generating visual content
using a Natural Language Interface (NLI) [39, 48]. Traditionally, vi-
sualization generation relies on machine learning algorithms, utilizing
rule-based and constraint-based methods [31, 66]. With the emergence
of LLMs, their powerful text processing capabilities have enhanced
tasks such as code generation and storytelling [19]. The LLM4Vis
framework [55] delivers visualization recommendations based on mini-
mal examples by utilizing feature descriptions, selecting demonstration
examples, generating explanations, and outlining reasoning steps to
offer human-like interpretations. Similarly, LIDA [11] introduces an
innovative tool that automates the generation of visualizations and info-
graphics through a multi-step pipeline, which involves summarization,
goal analysis, visualization code generation, and the creation of styl-
ized graphics. While LLM4Vis and LIDA are focused on generating
visualizations from datasets, ChartGPT [53] and LightVA [68] are de-
signed to generate visualizations and extract insights from abstract or
ambiguous natural language inputs. LEVA [69] enables LLMs to under-
stand chart information and the relationships between charts to provide
analysis tasks and interaction recommendations. This indicates that
LLMs possess knowledge about visualization and the ability to write
visualization code, supporting our work. In contrast to the extensive

text-to-visualization research, we focus on the automatic generation of
time-series chart summaries.

2.2 Enhancing reasoning and factual knowledge in LLMs

Researchers raise a number of prompting approaches to enhance LLMs’
reasoning ability. Wei et al. [59] introduce Chain of Thought (CoT),
which guides LLMs to decompose a complex reasoning problem into
intermediate steps, and then solve each task step-by-step. Program of
Thought (PoT) [8] expresses reasoning steps as Python programs, and
it leverages the computational capabilities of Python to improve the
accuracy of data processing in LLMs. Although great progress has been
made in decreasing hallucinated facts by using CoT, LLMs are still not
one hundred percent reliable in handling reasoning tasks [13,64,70]. To
further improve the accuracy of the LLM answers, Wang et al. [56] pro-
pose a self-consistency strategy, which is designed to generate multiple
reasoning paths and determine the final answer by employing a majority
vote among them. Self-Contrast [67] generates multiple reasoning paths
and re-evaluates and revises the text by comparing differences among
them. Multi-agent interaction has also been integrated into LLMs to
reduce hallucination and augment its problem-solving ability. Cohen
et al. [10] asks one LLM to generate a statement and another LLM to
check its truthfulness by raising questions. Considering the increased
inference cost of leveraging multiple LLMs, Wang et al. [58] instead
propose using a single LLM to simulate and iteratively self-collaborate
with different personas. We combine various prompting strategies and
employ external modules to ensure analysis accuracy, guiding LLMs to
analyze charts step by step according to our proposed guidelines, which
greatly reduce hallucinations in time-series chart summary generation.

2.3 Large Language Models for Chart Summarization

Lundgard and Satyanarayan [34] categorize semantic content into four
levels: L1 content includes chart construction(e.g., axis); L2 content
describes statistical concepts and relations(e.g., extrema); L3 content
refers to perceptual and cognitive phenomena(e.g., data trend); L4
content reveals contextual and domain-specific insights. Our summary
generation follows this framework. LLMs possess the potential to
generate content across L1 to L4 due to their exceptional text process-
ing capabilities [19, 21] and excellent ability to organize logic and
structure [15]. Consequently, they are widely applied in summary gen-
eration. DATATALES [51] uses templated prompts to guide LLMs in
generating chart summaries. ChartThinker [33] improves the logical
consistency and accuracy of LLM-generated summaries through CoT
prompting and context retrieval, but it still exhibits shortcomings in
mathematical analysis. Ko et al. [28] generate summaries by guiding
LLMs to focus on statistical features and leverage external tools for
data analysis, reducing numerical hallucinations in LLMs. However,
none of the above chart summaries include L3 content. VisText [52],
through fine-tuning, enables LLMs to generate summaries including
L1-L3 content, but it only focuses on handling simple, uni-dimensional
charts and cannot extract relationships between data from different
dimensions in multidimensional data. Therefore, there is a lack of work
that simultaneously addresses the computation and reasoning limita-
tions of LLMs to guarantee both correctness and semantic richness in
the automation of summary generation. To bridge this gap, we propose
a new framework for generating time-series chart summaries.
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Fig. 2: Examples of time-series chart summary elements. We classify them into L1-L3, employ simple line diagrams to visually illustrate the meaning
of these elements, and present example sentences containing specific elements.

3 PRELIMINARIES

In this section, we derive the requirements for generating an accu-
rate and comprehensive summary of the time-series data chart. We
summarize the key summary elements according to L1-L3 content
categorization [34]. We also test real-world data using state-of-the-art
LLMs to identify the types of hallucinations that LLMs may produce
during summary generation.

3.1 Requirements

Based on prior literature, we identify two key requirements for generat-
ing accurate and effective time-series chart summary generation.

Analyze structural summary elements of time-series charts.
While many previous works have focused on automatically generat-
ing complete summaries based on large models [24, 36, 40, 52, 60],
they often lack a fine-grained understanding of content in L1-L3 for
time-series data. To address this, we need to conduct a detailed anal-
ysis and refine the elements for L1-L3, ensuring a more precise and
granular understanding of the content at these levels, and thus a more
comprehensive and structured summary.

Summarize hallucination types of time-series chart summary
generation. Previous research has shown that various hallucinations
can occur when automatically generating chart summaries [23, 40,
52]. By categorizing these different types of hallucinations, we can
more clearly identify and understand the characteristics of each type,
allowing us to develop more targeted solutions. Since different types of
hallucinations may require different approaches, classification helps us
accurately pinpoint the issues and make quick adjustments to improve
the accuracy and reliability of the generated summaries. Thus, we need
to summarize the hallucination types when generating a chart summary.

3.2 Summary Elements

To generate comprehensive time-series chart summaries, we have sum-
marized the essential elements from existing research [7, 16, 25–27, 30,
35, 49] and real-world chart dataset websites [43, 45] and categorized
them into L1 to L3 (Fig. 2).

L1 content includes elemental and encoded properties [34], such
as Title, Label and Axis, which describe the visual elements of the
chart’s construction. In L2 content, the most common key terms in the
summaries of time-series charts are Key Extremum and Growth Rate.
The Key Extremum is the key turning points of the curve, indicating

significant events. The Growth Rate quantitatively describes the speed
or intensity of changes in time-series data.

The content in L3 is divided into two main categories: unidimen-
sional trend description and multidimensional trend relationship de-
scription. For unidimensional trend description, the main elements
are: Rising Trend and Falling Trend, the most common; Stable Trend,
indicating little change; Change Trend, which fluctuates up and down;
Big Change, referring to sharp increases or decreases; Cyclicality, de-
scribing repeating patterns over time; and Oscillating Trend, which
fluctuates between multiple levels. For multidimensional trend relation-
ship description, Same Relation means entities maintain a consistent
relationship (e.g., line 1 is always above line 2); Contrast Relation
indicates a shift in dominance (e.g., line 1 leads in the first half, but line
2 overtakes in the second half); Same Trend means both dimensions
move in the same direction (either both rising or both falling); Contrast
Trend refers to one dimension rising while the other falls; and Gap
Trend indicates the gap between entities changes consistently in one
direction.

3.3 Hallucination Types

To gain a comprehensive understanding of the potential hallucinations
that may occur when LLMs generate time-series chart summaries, we
conducted tests using four state-of-the-art LLMs: GPT-4 [3], Claude-
3 [4], GPT-4o [41], and LLaMA-3.1-70B [12]. We sourced 20 time-
series line charts from real-world datasets [1, 43, 45]. These charts
included both unidimensional and multidimensional time-series data
covering diverse fields such as finance, energy, politics, education, and
environment. We prompted LLMs to generate L1-L3 summaries, using
Vega-Lite specification [46] and data table as the input. Each chart was
summarized by all the aforementioned models, resulting in a total of 80
summaries, containing 1083 sentences in total, and among them, 199
instances of hallucinations were identified. Then four authors, all with
visualization backgrounds, reviewed the L1-L3 parts of the generated
summary and independently created initial classifications of halluci-
nation types. Then, we integrated each person’s classifications and
collectively discussed the different findings to collaboratively establish
a unified, final taxonomy. During this process, we re-examined the
summaries to ensure that all hallucination types were accurately classi-
fied. If there were any discrepancies in our classifications, we engaged
in in-depth discussions until a consensus was reached, ensuring the
accuracy of the classification results.



We have identified a total of 10 types of hallucinations in Fig. 3.
We found that none of the hallucinations occurred in the L1 summary
element generation based on our test. Therefore, we have classified
them as L2 and L3, and summarized the limitations of LLM-generated
time-series chart summaries.

For L2 hallucinations, we have concluded the following 2 types:
Extremum Error. 12.6% of 199 instances of hallucination erro-

neous statements include it. This error occurs when LLMs incorrectly
describe a local extremum as the absolute maximum or minimum, when
in fact it is just a regular peak or trough value, or mistakenly identify
an ordinary value as an extremum.

Numerical Value Error. 3.0% of statements include such error.
This error occurs when there is a discrepancy in describing or calculat-
ing quantitative data. The rarity of this error stems not from the fact that
the LLM has strong numerical computation capabilities, but from the
fact that it rarely includes insights that require numerical calculations
in its summaries, thus not exposing this issue much.

For L3 hallucinations, we have categorized them into 5 types:
Trend Direction Error. 22.1% of the erroneous statements include

this error. This error arises when LLMs incorrectly identify the direc-
tion of a trend, such as misinterpreting an upward trend as a downward
one, or vice versa.

Multidimensional Trend Error. 10.0% of error instances occur,
where trends across multiple dimensions are misinterpreted. LLMs
either mistake the same trends/relations as contrast, or conversely,
mistake contrast trends/relations as the same. When describing multi-
dimensional trends, they mix data insights from different dimensions
together, leading to a very confusing and disorganized presentation.
For example, LLMs combine two dimensions into one, like “Google’s
stock price rose before 2010 and peaked in 2012”. However, “peaked
in 2012” is the attribute of another dimension, not Google.

Range Error. There are 4.0% cases of this error. When analyzing
time-series data, the start and end times of trends are incorrectly iden-
tified. When a sudden trend reversal occurs, LLMs fail to promptly
recognize and adjust to changes in the data, leading to an incorrect
description of the trend.

Cyclicality Error. There are 3.5% instances of this type of error,
where non-cyclical trends were incorrectly interpreted as cyclical.

Stability Error. This error, accounting for 1.5% of total errors,
occurs when a fluctuating trend is incorrectly described as stable, or
when stable data is misrepresented as fluctuating, leading to a skewed
perception of the actual trend.

We have categorized the following 3 classes as Limitations of Chart
Summaries Generated, which are common problems in L2 and L3:

Detail Omission. We identified 22.1% instances of this error, mak-
ing it the most common. This error refers to when LLMs tend to
generalize data within a specific range, focusing on overall trends while
overlooking key fluctuations and turning points in time-series data. This
oversight results in the masking of crucial underlying information, lead-
ing to an incomplete understanding of the data and potentially affecting
the final reasoning and decision-making. Additionally, when describing
multidimensional time-series line charts, LLMs tend to focus on data
from a single dimension, overlooking the others in summary.

Junk Description. There are 12.1% examples including such a
problem. This drawback can take the form of broad generalizations that
fail to specify key details, such as saying “some countries grow faster
and others slower” without naming the countries, or frequent mention
of various numerical values that represent meaningless points. It can
confuse the reader and reduce the effectiveness of the description.

Proportion Perception Error. This error accounts for 9.1%. When
describing fluctuations, terms like “significant” are often inaccurately
used, even if the magnitude of these fluctuations is quite minor com-
pared to other parts of the same line or to fluctuations in other lines.
This error highlights a common issue where LLMs fail to appropriately
scale its descriptions relative to the overall data variability.

Statistics indicate that among all types of hallucinations, the most
common ones are Detail Omission, for which it is challenging for LLMs
to generate a comprehensive summary that covers every dimension and
all key points, particularly for a complex chart, and Trend Direction
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L2 Hallucination Limitations of Chart Summaries Generated
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Fig. 3: The frequency of different types of hallucinations in LLM-
generated time-series chart summaries.

Error. Other frequent errors include Extremum Error, and Range Error,
stemming from poor semantic understanding of context. To address
these, we use mathematical calculations in the external module to im-
prove data analysis accuracy. Multidimensional Trend Error is another
common issue, which we mitigate by employing majority voting to
select the most frequent multidimensional insight. Additionally, we
find that when LLMs call external tools to generate code to analyze
data, they tend to focus only on basic metrics like averages, extremes,
and growth rates, often failing to provide a complete, logical chart
summary, while our framework effectively mitigates this problem.

These hallucinations severely impact the reader’s understanding of
the charts, causing significant confusion. Therefore, our framework
mitigates these hallucinations to ensure clearer and more accurate
summaries, especially Extremum Error, Numerical Value Error, Trend
Direction Error, Multidimensional Trend Error, Range Error, Detail
Omission, Junk Description and Proportion Perception Error.

4 CHARTINSIGHTER

Based on the guidelines in Sec. 3, we propose a pipeline for generat-
ing time-series chart summaries and an interface to support summary
generation, in which we implement an interaction that links text to the
chart. In our pipeline, we employ a multi-agent iterative collaboration,
along with external modules for data analysis.

4.1 Brainstorming
In this step, we assign two agents, Uni-Insighter and Multi-Insighter.
After inputting the time-series data and visualization specification, Uni-
Insighter analyzes and generates uni-dimensional insights for each
dimension (e.g., extrema, trends). And based on these uni-dimensional
descriptions output by Uni-Insighter, Multi-Insighter generates multi-
dimensional insights.

In Uni-Insighter, we have designed Numerical Pattern Analysis
Module to divide long time-series data into smaller data patches. We
determine the segmentation points of the time-series by identifying
significant extreme values in the time-series data, thereby dividing
the data into multiple patches, each with relatively consistent trend
changes. To further optimize the segmentation, we merge consecutive
patches that exhibit minimal fluctuation changes. We characterize the
volatility of each patch using its variance and establish a threshold
based on the median of the variances across all patches, adding k times
the standard deviation of these variances [47]. After multiple attempts,
we found that setting the k-value to 0 yielded the best results. Subse-
quently, multiple consecutive patches whose variance falls below this
threshold are merged to finalize the segmentation. This process ensures
that the number of patches is minimized while maintaining consistent
trend patterns within each patch. We then calculate key statistics (e.g.,
max, min, volatility) for different patches, along with providing a se-
mantic description of the data (Fig. 4-a). These statistic features are
designed to create an information-dense and compact representation of
the data, which helps LLMs better understand the variations in time-
series data [11]. This module specifically uncovers uni-dimensional
insight discussed in Sec. 3.2.

In Multi-Insighter, we have designed Majority Vote and Multi-
dimensional Relation Analysis Module. Multi-Insighter gener-
ates multi-dimensional trend description based on the output of Uni-
Insighter, repeating the process multiple times to elicit diverse de-
scriptions. We empirically set the repeating times to three to ensure a



Fig. 4: The pipeline of ChartInsighter includes three steps: Brainstorming, Refining, and Self-consistency Test. In ChartInsighter, we input
visualization specification and data table to initiate the analysis process. This is first handled by both Uni-Insighter and Multi-Insighter which
generate preliminary uni- and multi-dimensional data insights respectively, and compile an initial summary. In the refining stage, we have designed
a multi-agent collaborative process between the Multi-Insighter and the Writer. This iterative process, which involves both mining and organizing
insights, enables us to achieve a relatively accurate and comprehensive summary. At last, in the self-consistency test phase, we concentrate on
identifying and addressing key types of hallucinations to produce the final version of chart summary. In Prompt Template, we display the input, prompt,
and output of each step. For example, the input, prompt, and output of Step c are demonstrated in Prompt Template c’. It should be specifically
pointed out that Step g builds upon the input and prompt from Step d, with additional new content highlighted in orange font in Prompt Template g’.

balanced outcome. It then applies Majority Vote to filter and validate
the generated trend description, which leverages Multi-Insighter to
select the most consistent answer among multiple candidates [9]. Multi-
dimensional Relation Analysis Module analyzes the insights obtained
through Majority Vote and outputs insights, which have supplemented
the multi-dimensional relation and refined the temporal precision. Then
they are delivered to Multi-Insighter back to generate complete multi-
dimensional insights. The implementation details of Multi-dimensional
Relation Analysis Module are as follows: we begin by determining
whether intersections exist between multiple dimensions, enabling us
to identify whether they are of the same relation or contrast relation. If
the same relations are identified, we proceed to evaluate the rankings of
the dimensions across various time periods. Based on the results of the
previous analysis, we can pinpoint the corresponding time periods. To
be specific, we first utilize LLM to identify temporal expressions within
the sentence, such as specific time points (e.g., “mid-20th century”) or
durations (e.g., “in two years”). Then LLM will determine the relevant
period according to the context and analysis result. Next, we match
these temporal expressions to the corresponding data. This process

presents a challenge because the temporal descriptions in the sentence
are often coarse (a sentence may specify a time range such as “2000-
2024”, while the actual data is recorded at a finer granularity, such
as daily or monthly intervals). Consequently, directly mapping these
temporal descriptions to the raw long time-series data proves difficult.
However, the broader time ranges mentioned in the sentence are based
on the patches divided by Numerical Pattern Analysis Module, so we
can directly pinpoint a more precise time point according to the patches.
The output result is shown in Fig. 4-b.

In Fig. 4, we demonstrate our workflow using a real case. After
inputting Google’s and Apple’s stock data from 2000 to 2010, along
with the corresponding visualization specification, Uni-Insighter first
invokes Numerical Pattern Analysis Module to analyze the data, gen-
erating a JSON (Fig. 4-a). Based on the JSON, Uni-Insighter creates
individual, one-dimensional trends for the two companies (Fig. 4-c)
with the prompt in Fig. 4-c’. Subsequently, Multi-Insighter examines
the uni-dimensional trends to determine whether the two dimensions
have the same or contrast trends (output in Fig. 4-d, prompt in Fig. 4-
d’). This analysis is repeated three times, thus generating three multi-
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501,660,220 tons by 1916. However, after peaking in the early 

20th century, there was a sharp decline, with emissions 

decreasing steadily to 17,556,306 tons by 2023. In the US, 

per country CO2 emissions from coal rose to a peak of 

approximately 1.55 billion tons in 1918, fluctuated, then 

generally declined after the 1940s, followed by a gradual rise 

that culminated in a peak of around 1.5 billion tons in 1995.


Comparative analysis of the trends reveals a stark 

divergence between the three countries' emissions patterns 

in recent years.  While India's emissions have continued to 

rise sharply, both the UK and the US have experienced 

significant reductions, particularly after the mid-20th 

century, with a more pronounced decrease after 2005.  

ChartInsighterChartInsighter

a

c

b

d

...approximately 1.55 billion tons in 1918, with a small peak 
around 1956, and then gradually decreased thereafter, 
followed by a gradual rise  that......

... there was a decline ...

Hi, I am ChartInsighter! Can I help you?

Fig. 5: The overview of ChartInsighter. Users can input a Vega-Lite specification and data table to generate a summary. By hovering over sentences
containing data references, the corresponding portions in the chart are highlighted (a). Additionally, users can interact with the chat view, prompting
the model to modify the summary or elaborate on details they find more interesting, resulting in a more satisfactory summary.

dimensional data insights, with majority voting (Fig. 4-e’) confirming
the result (Fig. 4-e). The analysis concludes that both companies
exhibit the same trend: an increase in 2007 followed by a decline in
2008. This insight is forwarded to Multi-dimensional Relation Analysis
Module, which performs further analysis and concludes that Google’s
values consistently exceed Apple’s during this period(Fig. 4-b). Finally,
Multi-Insighter synthesizes all insights with the prompt in Fig. 4-j’ and
concludes that both companies experienced an increase in 2007 and a
decline in 2008, with Google’s values always exceeding Apple’s from
2000 to 2008.

4.2 Refining
In this step, Multi-Insighter and Writer collaborate through multi-
ple rounds to produce a smoother and more comprehensive summary.
Writer first generates an initial summary based on the uni-dimensional
insights from Uni-Insighter, the multi-dimensional insights from Multi-
Insighter, and the visualization specification. Multi-Insighter then
supplements and refines the initial summary using the same approach
as the one in Brainstorming. Writer continues to integrate the additional
content provided by Multi-Insighter, and Multi-Insighter supplement
again, iterating through multiple rounds.

We use Fig. 4 to demonstrate the iteration process. After Brain-
storming, Multi-Insighter’s multi-dimensional insights, Uni-Insighter’s
one-dimensional trends and visualization specification are sent to the
Writer to draft an initial summary (Fig. 4-f) with the prompt in Fig. 4-f’.
After completing the draft, Writer returns it to Multi-Insighter for fur-
ther review. Multi-Insighter reanalyzes the insights and uses majority
voting to confirm additional findings, such as the observation that both
companies rebounded in early 2008 before declining again (Fig. 4-g).
The system calls Multi-dimensional Relation Analysis Module again,
which pinpoints the timeline to January 2008. Multi-Insighter synthe-
sizes these insights (Fig. 4-h’) and provides the updated summary to
the Writer for further refinement. This iterative process continues until
Multi-Insighter determines that no new insights remain uncovered. The
final output is a comprehensive summary.

4.3 Self-consistency Test
We then conduct a Self-consistency test to detect potential errors in the
generated chart summary and output a corrected one. In the previous
steps, we have called external modules to mitigate some hallucinations
(e.g., Trend Direction Error and Multi-dimensional Trend Error). Since
our summary is derived through patch-based analysis, LLMs may
mistakenly identify local extrema within individual patches as global
extrema. This causes the LLM to incorrectly describe the identified data

insights using terms like “maximum” which are actually not. Similarly,
fluctuations that appear significant within a specific patch may lose
prominence when evaluated across the entire curve. Therefore, it would
be inappropriate to characterize these fluctuations as significant within
a broader context.

To address these issues, we focus specifically on detecting and cor-
recting Extremum Error and Proportion Perception Error in the sum-
mary. We guide the LLM to identify these potential errors and reana-
lyze the questionable sentences. Then we instruct LLM to compare the
newly generated sentences with the original sentences. If the sentences
are consistent, it confirms that our original summary is accurate, and
we output the original summary as the final version. However, if the
data insights conveyed in sentences differ, LLM revises the original
sentences.

In Fig. 4, we can see that this step identifies a potential error in the
sentence “Apple reached a maximum of 1.48” (Fig. 4-i). Then LLM
checks and figures out that the maximum should be 3.38. Then the
sentence is revised accordingly and the final summary is output.

4.4 Linking Summary to Chart
We design a system to help users effectively generate time-series chart
summaries and allow them to personalize and modify the generated
summaries. Our interface consists of 3 parts: chart view, summary
view, and chat view (Fig. 5). The interaction process begins with the
chat view, where users provide the data and visualization specification.
The chart view then generates the corresponding chart visualization,
and a preliminary version of the summary is automatically created in
summary view. Users can further refine the summary based on their
needs until finally arriving at a correct and satisfactory version.

Inspired by [25,51], we link the text in the generated summary to the
chart in interaction. Sentences containing data references are underlined
with a dashed line, and when users hover over these sentences, the
corresponding portion in the chart is highlighted (Fig. 5-a).

This interactive linking design helps users quickly map the text
to the relevant portions in the chart, especially in complex, multi-
dimensional charts, significantly reducing the time and effort needed
to locate specific chart portion. Additionally, it facilitates checking for
any potential hallucinations in the summary.

5 BENCHMARK

LLMs often generate chart summaries that contain significant halluci-
nations [52], making the mitigation of hallucinations an important task.
In the future, there will be numerous research efforts aimed at reducing
these hallucinations.



...This peak was followed by a period of 
decline to 175 attacks in 1986, a brief 
upswing to 500 attacks in 1991, and 
eventually a cessation of terrorist 
activities, reaching zero attacks by 1998. 
Lebanon experienced a sharp increase 
from 1987 to 1989......


... However, in the late 1970s and early 
1980s, the number of attacks surged 
dramatically, ... In 
the 2000s, the number of attacks 
significantly dropped, but there was a 
slight resurgence in 2013 and 2014, 
reaching 121 and 205 attacks, which 
shows a certain periodicity.....

peaking at 500 in 1992 

500

710

This line chart describes the change in 
the number of terrorist incidents over 
time in El Salvador and Lebanon. Both 
countries experienced fluctuations in 
terrorist incidents from 1970 to 2021, with 
the most intense period occurring from 
the late 1970s to the mid-1990s.  El 
Salvador had more incidents......

This chart shows the trend of patent 
applications between India and Cuba from 
1980 to 2021. In 1980, Cuba had a 
significantly higher patent application rate, 
at 13.15 per million people, while India had 
1.73. However, the two countries 
experienced very different trajectories over 
the next four decades...

Extremum Error

Gold Summary

GPT-4

VL2NL

ChartInsighter

The line chart displays the patent applications 
per million people in India and Cuba from the 
1980s to the early 2020s.  The initial trend for 
both countries shows a decrease in patent 
applications per million.  Following this initial 
decline, India experienced.......

The visualization likely depicts a comparison 
of patent applications per million people 
between India and Cuba from 1980 to 2021, 
with its peak in 1984 for Cuba, while India's 
peak occurred in 2021, reaching 20 patents 
per million people. The graph likely shows a 
specific point.....

VL2NL

Gold Summary

Proportion Perception Error

Numerical Value Error

......Cuba's data shows greater fluctuations, 
with high levels of patent applications in the 
early 1980s, peaking at over 21.26 in 1984, 
followed by a steady decrease to around 
1.86 in 2021. The contrasting trends highlight 
India’s significant upward momentum in 
innovation, while Cuba’s patent......

Stability Error

The visualization likely shows a time 
series with peaks in terrorist attacks for 
El Salvador and Lebanon. El Salvador's 
data would exhibit a more pronounced 
fluctuation with periods of intense 
activity, while Lebanon's trend would be 
relatively steadier, despite a peak in 
1983.

Detail Omission

Detail Omission

GPT-4

18

India

ChartInsighter


Cyclicality Error

Fig. 6: An example of our benchmark dataset. We carefully crafted gold summaries and labeled the hallucinations at sentence granularity for the
summaries generated by each of the three models GPT-4, VL2NL, and ChartInsighter for each chart.

To bridge this gap, we have introduced a benchmark for time-series
chart summary generation. First, we have systematically summarized a
set of hallucination types and their definitions that occur when LLMs
generate summaries for time-series data, as detailed in sec. 3.3. This
framework enables a clearer and more quantifiable understanding of the
shortcomings in LLMs’ ability to produce accurate and reliable sum-
maries. Second, we have constructed a benchmark that, for each chart
(a total of 75 charts), includes data, Vega-Lite specification, chart image,
a gold summary created manually, and three summaries generated by
GPT-4, VL2NL, and ChartInsighter. We have annotated the types of
hallucinations present in each sentence (Fig. 6), which was then uti-
lized to perform a comparative analysis of the generation performance
between these three models. We have also evaluated and quantified key
metrics, including hallucination rate and semantic richness, which were
subsequently utilized to perform a comparative analysis of the gener-
ation performance among these three models, as detailed in sec. 6.2.
Future research can use our benchmark to evaluate the effectiveness of
their hallucination mitigation techniques.

We collected 75 time-series line charts from reputable real-world
datasets [1, 2, 45, 54], covering domains such as economics, environ-
ment, and energy, with 25 charts for each of three complexity levels:
simple, moderate, and complex. These levels were determined through
consensus after extensive discussion among three of the authors, ensur-
ing the comprehensiveness of the dataset. We assess chart complexity
based on several data features, including peak values, sequence length,
dimensions, and variation patterns. First, we consider the number of
peaks and the distance between peaks and valleys. Data with large dif-
ferences between peaks and valleys, and frequent fluctuations, are more
complex. Simple charts typically have 1-2 significant peaks, moderate
ones have 3-4, and complex ones have more than 4 peaks. Next, the
sequence length and data dimensions are evaluated. Longer sequences
and higher dimensions increase chart complexity. However, even if a
chart has five peaks but only one dimension, we still categorize it as
a complex chart due to the high number of fluctuations. Lastly, we
examine the variation pattern. If the data shows periodicity or trends,
the chart is less complex. Irregular or unpredictable data increases

complexity.
For each chart, we recruited 6 participants aged 23-28 with a back-

ground in data visualization to create gold summaries covering L1-L3
content. Participants were provided with the chart, data, and guidelines
specifying L1-L4 content, and were instructed to focus on describing
L1-L3 content. Two approaches were used: if an expert-level summary
of the chart existed, participants refined it based on the guidelines; if
not, they used LLMs to generate an initial draft, which they then edited.
While human-written summaries typically highlight visually prominent
features like peaks and may omit some details, they generally cover
L1-L3 content thoroughly.

We used the Vega-Lite specification and the data table of each chart
as inputs to guide our model, VL2NL [28], and GPT-4 to generate chart
summaries. We explained the types of hallucinations and their defi-
nitions to 6 participants, who then performed a sentence-by-sentence
review of each generated summary, annotating instances of halluci-
nations. Participants were compensated $10 per hour. We further
calculated the frequencies of hallucinations in each summary. To en-
sure the quality of our benchmark, we conducted a manual review,
including verifying the accuracy and completeness of the summaries,
validating the Vega-Lite specifications, and examining the classification
of hallucination types. We strive to ensure that the benchmark meets
high standards in all dimensions, thereby providing researchers with a
high-quality and reliable dataset that supports future applications.

6 EVALUATION

In this section, we evaluate the diversity, accuracy, and hallucination
rate of the generated summaries, and assess the algorithm’s perfor-
mance, all based on our benchmark. Finally, a usage scenario is pre-
sented to illustrate how ChartInsighter can help the user generate a
satisfactory summary.

6.1 Automatic & Human Evaluation
To evaluate our model’s effectiveness in generating chart summaries,
we compared it against a gold summary, GPT-4 (our base model), and
VL2NL (which also uses Vega-Lite specification input and generates



Automatic & Human Evaluation Quality Evaluation

Summary RC ↑ Chamfer ↑ MST ↑ Span ↑ Sparness ↑ Entropy ↑ Human ↑ Semantic Richness ↑ Hallucination Rate ↓

GOLD 1.34 1.08 17.21 0.95 1.09 2.68 - - -
VL2NL 1.34 1.18 10.85 0.93 1.10 2.26 1.70 0.33 1.63
GPT-4 1.36 1.21 15.21 0.95 1.16 2.51 2.86 0.74 0.48
OURS 1.36 1.17 25.15 0.97 1.18 3.01 3.79 0.75 0.14

Table 1: Evaluation results for different models using our benchmark. We compare VL2NL [28] and GPT-4 (our base model) across multiple metrics,
including Automatic & Human Evaluation and Quality Evaluation. ↑: Higher is better, ↓ : Lower is better. Bold represents the best result.

L1-L2 content summaries) using our benchmark to assess text diversity.
We used six evaluation metrics from previous studies [28] for auto-
matic evaluation: remote-clique (average of mean pairwise distances),
Chamfer distance (average of minimum pairwise distances), MST dis-
persion (sum of edge weights of MST), span (Pth percentile distance to
centroid), sparseness (mean distance to medoid), and entropy (Shannon-
Wiener index for points in a grid partition). To assess ChartInsighter’s
performance, we calculated the average score for each metric.

The evaluation results, as shown in Tab. 1 (Automatic & Human
Evaluation) indicate that ChartInsighter generally generates semanti-
cally richer summaries compared to VL2NL and GPT-4. We score the
highest in RC, MST, Span, Sparseness, and Entropy, respectively 1.36,
25.15, 0.97, 1.18, and 3.01, and our Chamfer score is 1.17, just slightly
below the GPT-4’s score of 1.21, both suggesting that our summaries
are more dispersed, varied, and complex. However, these metrics may
be incomplete and may not fully capture the quality of the summaries,
as the scores for the gold summaries in Tab. 1 are not the highest.
Therefore, it is necessary to conduct a human evaluation.

To evaluate the quality of summaries generated by ChartInsighter,
we conducted a human evaluation. Six participants, aged 20 to 25,
who had experience in reading and writing chart summaries, took
part. Before the experiment, we clarified the definitions of accuracy,
coverage, summary elements, and types of hallucinations (as outlined
in Sec. 3) to ensure objective evaluation. Participants evaluated each
summary based on three criteria: Accuracy, Fluency, and Matching
Degree (the matching degree between the chart and the summary). Each
summary was rated on a scale from 1 to 5, with 1 being the lowest and
5 the highest. Summaries were presented randomly, and the final rating
was the average of all ratings. Tab. 1 shows the average ratings for the
3 summary groups. ChartInsighter received the highest rating of 3.79,
indicating it meets user needs most effectively.

6.2 Quality Evaluation

To evaluate the quality and reliability of the generated summaries,
we focus on two key metrics: Semantic Richness and Hallucination
Rate. Semantic Richness is measured by calculating the ratio of L2
and L3 sentences to the total number of sentences in the summaries
generated by each model. The Hallucination Rate is determined by the
ratio of the number of hallucinations to the total number of sentences.
It should be noted that the Hallucination Rate may exceed 1, as a
single sentence could contain multiple hallucinations. We conducted a
statistical analysis of hallucinations in the summaries generated by GPT-
4, VL2NL and ChartInsighter. Each sentence was carefully examined,
and every hallucination identified was categorized according to the
types of hallucinations outlined in Sec. 3.3.

Statistical results presented in Tab. 1 (Quality Evaluation) show
that although GPT-4 performs very similarly to our model in terms of
semantic richness, its hallucination rate is significantly higher, which
means ChartInsighter maintains a better balance between semantic
richness and factual accuracy, extracting more data insights and deeper
semantic layers, with fewer hallucinations.

We analyze hallucinations in summaries generated by GPT-4 and
found Detail Omission frequently occur. Additionally, GPT-4 tends to
focus on vague information rather than providing specific numerical
details. It also often overlooks significant peaks, using terms like
“fluctuate”. The hallucination rate in chart summaries generated by
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Fig. 7: Evaluation results of algorithm performance. The boxplot displays
the time spent on each step processing charts of different complex-
ity—Brainstorming, Refining, and Self-consistency Test—showing the
range, median, and outliers for each phase.

VL2NL is the highest. The most common type of hallucination in
VL2NL is also Detail Omission, as its summaries only include L1/L2
content without generating L3 content, leading to missing information
and incomplete summaries. VL2NL also frequently makes calculation
errors when performing statistical operations (e.g., maxima, minima,
medians), resulting in Numerical Value Error. The chart summaries
generated by VL2NL also contain many Junk Descriptions, where the
content is unrelated to the chart, for example, “The data is sourced from
a file named 1.csv”. In contrast, ChartInsighter offers precise values
and exact time points in its summaries.

6.3 Algorithm Performance

The algorithm was evaluated on a dataset of 75 charts from our bench-
mark with varying complexity (25 simple, 25 moderate, and 25 com-
plex). The tests were conducted by calling the GPT-4 API, and the
evaluation was performed at each stage (Fig. 7), including Brainstorm-
ing, Refining, and Self-consistency Test. The Brainstorming module
specifically tested the runtime of two agents, Uni-Insighter and Multi-
Insighter. The observed median execution time for the 75 charts was
87.23 s (± 36.1 s), with a maximum of 171 seconds and a minimum of
18 seconds. As chart complexity increases, the total time also grows.

In Brainstorming, the median time spent by Uni-Insighter is 7.6 s
± (4.34 s), balancing accuracy and efficiency. Multi-Insighter requires
a longer time, 31.4 s ± (5.9 s) because it generates multi-dimensional
descriptions three times and conducts majority voting.

Refining is the most time-consuming step, as multiple iterations are
inherently time-intensive. However, without this iterative refinement,
the accuracy and comprehensiveness of the output would be signifi-
cantly lower, as evidenced by the summaries generated by GPT-4 and
VL2NL in our benchmark. In terms of the median, complex charts take



longer than moderate and simple ones, with complex ones requiring
55.34 s (± 23.73 s), moderate 42.31 s (± 20.41 s), and simple 44.01
s ± (19.62 s). Simple and moderate are mostly single-dimensional
charts which require less time as they do not involve extracting multi-
dimensional insights, while complex charts involve more dimensions
and have more intricate trend changes, requiring Multi-Insighter to
go through more iterations to extract meaningful insights. The aver-
age time for the Refining phase is 46.7 s (± 23.7 s), with most charts
completed in 2-3 iterations. To prevent inefficient iterations, we set
a maximum of 5 iterations, limiting unnecessary time consumption.
In the Self-consistency Test phase, the median time is 7.64 s (± 4.34
s), 7.97 s (± 3.78 s), and 9.21 s (± 3.15 s) for simple, moderate, and
complex which are faster than Refining since it does not involve multi-
dimensional insight extraction.

6.4 Usage Scenario
Nancy, a data journalist of a meteorological organization, is working
on a report about CO2 emissions from coal. She derives historical
data on annual CO2 emissions from coal in the United Kingdom, the
United States, and India, spanning from 1750 to the present, from the
website of the Global Carbon Budget Office [44]. Using this dataset,
she created a multi-dimensional line chart in Vega-Lite specification,
visualizing changes in annual coal CO2 emissions for these countries.

To quickly extract insights from this complex chart, Nancy uploaded
the data table and the Vega-Lite specification to our ChartInsighter
system. Then the system generated a chart summary (Fig. 5-b). The
summary covered L1-L3 elements that we proposed in Sec. 3.2, includ-
ing the chart’s basic construction, uni-dimensional insights for each
of the three countries-upward and downward trends, fluctuations, key
extreme values, and comparison between the three countries, highlight-
ing how the U.S. and the U.K. took the lead in emissions in the 19th
and 20th centuries, but have significantly decreased in recent decades,
and how the developing country, India, has risen to prominence. Nancy
agreed with this observation and wishes to include it in her summary.

The summary view was interactive, which can help her quickly
map the text to the relevant portions in the chart, especially in such
a complex, multi-dimensional chart: hovering over the sentence con-
taining data references highlighted the corresponding portion of the
chart, allowing Nancy to quickly verify the accuracy of the summaries.
While reviewing, she noticed that using “sharp” to describe the U.K.
emissions’ decline after 1955 is inappropriate compared to the real
sharp declines in the U.S. and requested a correction (Fig. 5-c). After
revision, the summary was concise and accurate but missed a key in-
sight—the sharp increase in U.S. emissions in 1944, which she believed
had news value and could attract the audience and suggested adding
(Fig. 5-d). The system updated the summary to include this, delivering
a refined version that met her expectations. The final version offered
accurate and detailed accounts of the trends for each country, and key
turning points—such as peaks in fluctuations in U.S. emissions, the
UK’s abrupt shift in its previously steady rise, and comparative analyses
of the three countries’ emission trends and relations. Nancy used this
enhanced summary as the caption for her chart, helping readers easily
grasp the insights. Building on the summary, she crafted a detailed
narrative exploring the political and historical context of CO2 emissions
from coal, enough to be considered a comprehensive analysis.

7 DISCUSSION

In this section, we discuss some insights gained from our work and
potential directions for future research.

Data Types. Our research focuses on time-series line charts. We
have chosen to study it because it is a fundamental and versatile data
type that is prevalent across various fields. Although our current re-
search framework primarily focuses on time-series data, its strong
extensibility and generalizability make it suitable for a wider range of
data types and chart formats in the future. Future research can build
upon our foundation to explore the unique characteristics of other data
types in greater depth.

Inputting images. Research has shown that when generating chart
summaries using LLMs, providing backing data leads to more effective

summaries compared to other forms of input [24, 52]. Based on this,
we use a combination of raw data and visualization specification as
inputs, where visualization specification is used to represent the chart
construction. Multimodal Large Language Models have shown strong
capability in comprehending images recently [18, 32, 37, 65]. In the
future, we can consider including chart images as input, as different
types of charts convey rich semantics through unique visual languages,
using visual elements such as color, shape, size, and position [22],
which would enable the model to better infer the characteristics of
different chart types.

Hallucinations. Our work has cataloged the types and frequencies
of hallucinations when LLMs generate summaries for time-series data
charts, and integrated external modules to address the most frequently
occurring hallucinations. However, only a portion of the hallucinations
are mitigated, and other types persist. In the future, Proportion Per-
ception Error can be further improved by applying statistical analysis,
such as using Bayesian methods to probabilistically cluster data [47],
thereby dynamically determining the standard of comparison.

Integrating domain knowledge. Our summaries focus on L1-L3
content, which can be detected through visual and data dimensions.
Integrating L4 content requires domain-specific knowledge. Addition-
ally, the summary of time-series data charts varies across different
fields, each with its own unique characteristics and analytical focus.
For example, in the industrial field, the focus is on equipment op-
erating status, fault detection, and potential issues [42]; whereas in
the financial field, it is necessary to account for market fluctuations
and the impact of major events on the data. Therefore, generating L4
content in the summary remains a challenging task. One approach is
domain-specific fine-tuning of the LLM to improve its understanding
and content generation in a particular field.

Mixed-initiative Summary Generation. Currently, our interface al-
lows the model to modify the summary but doesn’t provide control over
intermediate steps in the generation process. To improve this, we could
expose certain functions within the automatic workflow, enabling users
to make modifications directly. This would allow finer control, improve
hallucination detection, and enhance both system interpretability and
user experience, especially for complex chart. To further enhance the
flexibility of the interface, future research could extend the existing
text-chart link by incorporating a chart-text link as well, where hover-
ing over a region of the chart would highlight the corresponding text,
enabling bidirectional interaction.

Time Efficiency. Although we cannot currently support real-time
chart generation, the waiting time of the cold start for generative tasks,
as discussed in Sec. 6.3, is entirely acceptable, since users can receive
more accurate and comprehensive summaries, ultimately saving consid-
erable time that would otherwise be spent on extensive revisions. One
approach is to allow users to view the generation process, during which
they can stop the iteration once a satisfactory result is achieved. An-
other potential future direction is to improve the processing efficiency
of large-scale language models by optimizing computational resources
and leveraging hardware acceleration [5, 38].

8 CONCLUSION

We introduce ChartInsighter, an automated system for generating sum-
maries of time-series data charts. We have identified the elements
within time-series data chart summaries and, through testing and statis-
tical analysis, we have summarized the types of hallucinations that may
occur when LLMs automatically generate summaries. These findings
serve as guidelines for our system’s generation. We designed a frame-
work that seamlessly integrates natural language inference capabilities
with external analysis modules, utilizing multi-agent collaboration for
iterative refinement to produce the final chart summary. We constructed
a benchmark that annotates hallucinations at a sentence level. We also
conducted evaluations to validate our system’s capacities. Results con-
firmed that our system significantly outperforms state-of-the-art LLMs
in generating time-series data chart summaries and effectively mitigates
commonly occurring hallucinations. Our guidelines and framework
can advance research in automation for chart summary generation.
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