
NotebookRAG: Retrieving Multiple Notebooks to Augment the Generation
of EDA Notebooks for Crowd-Wisdom

Yi Shan1* Yixuan He1 Zekai Shao1 Kai Xu2† Siming Chen1‡

1Fudan University, China
2University of Nottingham, UK

ABSTRACT

High-quality exploratory data analysis (EDA) is essential in the data
science pipeline, but remains highly dependent on analysts’ exper-
tise and effort. While recent LLM-based approaches partially reduce
this burden, they struggle to generate effective analysis plans and
appropriate insights and visualizations when user intent is abstract.
Meanwhile, a vast collection of analysis notebooks produced across
platforms and organizations contains rich analytical knowledge that
can potentially guide automated EDA. Retrieval-augmented gener-
ation (RAG) provides a natural way to leverage such corpora, but
general methods often treat notebooks as static documents and fail
to fully exploit their potentially knowledge for automating EDA.
To address these limitations, we propose NotebookRAG, a method
that takes user intent, datasets, and existing notebooks as input to
retrieve, enhance, and reuse relevant notebook content for automated
EDA generation. For retrieval, we transform code cells into context-
enriched executable components, which improve retrieval quality
and enable rerun with new data to generate updated visualizations
and reliable insights. For generation, an agent leverages enhanced re-
trieval content to construct effective EDA plans, derive insights, and
produce appropriate visualizations. Evidence from a user study with
24 participants confirms the superiority of our method in producing
high-quality and intent-aligned EDA notebooks.

1 INTRODUCTION

Exploratory Data Analysis (EDA) [53] plays a crucial role in the
data science pipeline. High-quality EDA is time-consuming and
requires coding proficiency, statistical thinking, and visualization
literacy [64], which places a heavy burden on analysts. To ease these
issues, prior research has explored rule-based and reinforcement
learning approaches for automated EDA [3, 65, 68]. With the rise of
large language models (LLMs), automated EDA has gained power-
ful capabilities, enabling better alignment with user intent [33, 73]
and comprehensive insight discovery [34, 71]. However, some ap-
proaches still face challenges in handling abstract intent, others
may rely on comprehensive fact-checking of the dataset that can be
inefficient and fragmented, and most remain limited in providing
visualizations that effectively support analytical reasoning [7, 22].

In real-world data mining, the process is typically driven by a
high-level predictive or descriptive goal [38]. While analysts can
usually specify the overall objective at the outset (e.g., building a
time-series model for price prediction), they often struggle to design
targeted EDA plans that effectively support and operationalize the
data mining task (e.g., first providing an overview of the price series
and then analyzing its seasonal distribution). This reflects an abstract
intent (performing EDA to prepare for a data mining task) that lies

*E-mail: ydan24@m.fudan.edu.cn
†E-mail: kai.xu@nottingham.ac.uk
‡E-mail: simingchen@fudan.edu.cn. Corresponding author.

between explicit instructions (e.g., testing for significant periodicity)
and no intent (e.g., simply asking to understand the data) [64].

In practice, such as in Kaggle competitions or enterprise analytics,
the same dataset or data source is often explored repeatedly by many
analysts, producing numerous computational notebooks [41] that
share consistent data semantics and thus provide more relevant and
reliable analytical knowledge for EDA [10, 47]. Interviews with
senior enterprise analysts further confirmed this practice, revealing
that analysts routinely revisit updated datasets and rely on existing
notebooks to accelerate analysis and improve efficiency.

Retrieval-augmented generation (RAG) [26] provides a natural
way to leverage such notebooks, but existing approaches face two
main issues. For retrieval, notebooks are often treated as static
documents rather than executable artifacts, causing retrieved content
to become invalid as data evolves; additionally, cells are handled
independently, which ignores contextual dependencies and degrades
retrieval quality [27, 30, 31]. For generation, prior methods mainly
target well-defined question answering [52] and are therefore ill-
suited for automating EDA driven by abstract user intent.

To better leverage these corpora for automated EDA, we propose
a method named NotebookRAG, which takes user intent, a dataset,
and existing notebooks as input, first retrieving and enhancing rel-
evant content from notebooks and then automatically generating
EDA notebooks that integrate statistical analysis and visualization.
For retrieval, code cells are enriched with contextual information,
transformed into executable components, and annotated with the
data columns they use. The user intent (e.g., conducting EDA to pre-
pare for time-series modeling) is mapped into multiple EDA queries
(e.g., examining average price by region), which are used to retrieve
relevant components based on their used columns. These compo-
nents are re-executed on new data to generate updated visualizations,
from which reliable insights are obtained. For generation, we design
an agent that produces EDA notebooks from the dataset and user
intent, with an optional interface to incorporate retrieval outputs.
Leveraging the enhanced retrieval content, the agent can construct
more effective EDA plans, generate more appropriate visualizations,
and derive insights that better support analytical reasoning.

To evaluate NotebookRAG, we conducted a within-subject user
study with 24 participants using realistic Kaggle datasets, repre-
sentative data mining tasks, and existing notebooks. Participants
compared the quality of notebooks produced by the ChatGPT Data
Analyst plugin [39], a baseline notebook generator, a general re-
trieval method [27], and our proposed retrieval method. In addi-
tion, we performed objective checks on notebooks generated by our
method. NotebookRAG was rated significantly higher than the other
approaches across most evaluation dimensions and received more
positive qualitative feedback, demonstrating its ability to generate
higher-quality notebooks that better align with user intent.

In summary, our contributions are concluded as follows:
• NotebookRAG, an automatic approach for generating efficient

and effective EDA notebooks by combining user intent, datasets,
and existing notebooks.

• A retrieval technique that extracts relevant content from existing
notebooks and an agent that leverages this content to automatically

generate EDA notebooks.
• A user study demonstrating that NotebookRAG significantly out-

performs baselines in generating higher-quality, intent-aligned
EDA notebooks.

2 RELATED WORK

In this section, we review computational notebooks, automating
EDA, and insight generation.

2.1 Computational notebook

Computational notebooks have become widely adopted for data anal-
ysis owing to their interactivity, reproducibility, and visualization ca-
pabilities [4,24,41,47], leading to a vast number of notebooks hosted
on public platforms such as GitHub [19, 30] and Kaggle [37, 45],
as well as within enterprises [10]. By integrating executable code
with rich documentation, notebooks serve both as computational en-
vironments and communication media; however, this dual role often
leads to unstructured content, making notebooks harder to reuse and
parse than traditional code files or analytical reports [6, 51, 54, 60].

Notebook Reuse. Some works improve the understandability of
personal notebooks to facilitate reuse by cleaning up messy content
[17] and enriching documentation with clearer explanations [5].
Others have explored alternative presentation formats, such as slides
[55, 56], reports [59], or videos [40] for storytelling, as well as
visualizations of notebook content and structure [63] to reduce the
cognitive burden of reading notebooks. In addition, some studies
have constructed large corpora of public notebooks [37, 45], which
have been used to analyze real-world notebook practices [44] by
statistically characterizing various notebook features, and to support
tasks such as code recommendation [30, 31], model training [14],
and fine-tuning [19, 28] by building mappings between code and
natural language or extracting task-specific code sequences.

Relatedly, ReSpark [51] extracts analytical objectives from exist-
ing reports and adapts them to new datasets, similarly emphasizing
the reuse of analytical intent. Improving the understandability of
individual notebooks enables fine-grained local reuse, while corpus-
based methods offer broader coverage; however, neither achieves
both simultaneously. In contrast, our work reuses multiple note-
books analyzing the same source datasets, combining fine-grained
reuse with the diversity of analytical strategies across notebooks.

Notebook Parsing. Notebook parsing is essential for understand-
ing and analyzing notebook code, and existing methods generally
fall into static and dynamic analysis. Static analysis examines code
via Abstract Syntax Trees (AST), commonly treating each code cell
as a unit and representing it by the variables or APIs it uses, with
relationships established across cells [30, 31, 63]. Some approaches
model the notebook as a linear yet segmented sequence under the
assumption of sequential cell execution [19, 68], but they mainly fo-
cus on data wrangling and do not cover other EDA stages. Dynamic
analysis monitors the notebook kernel to collect runtime records and
variable states, enabling richer analyses [12, 16, 17, 67]. However,
it relies on execution logs and is typically implemented as interac-
tive plugins, making it unsuitable for already existing notebooks;
re-executing notebooks to obtain such logs is also unreliable due to
non-linear execution and low reproducibility [6, 42]. Therefore, we
adopt static analysis and extend prior approaches.

2.2 Automating EDA

Recognizing that high-quality EDA typically requires substantial
expertise from analysts, researchers have explored ways to reduce
these requirements by developing EDA assistants or creating a fully
automated EDA process.

EDA assistants. EDA assistants serve to support analysts during
user-led analyses. Some works reduce the analyst’s burden through
code recommendations [30, 31] or visualization recommendations

[25], while others ease the cognitive load by visualizing the EDA
process [48, 63], which helps analysts conduct more effective EDA.

Fully Automated EDA. Fully automated EDA shifts the analyst’s
role from active exploration to interpreting generated content, sig-
nificantly reducing workload. Rule-based methods [65, 68] provide
strong controllability but lack flexibility, while deep reinforcement
learning methods [2,3,35] demonstrate better generalization and are
capable of generating end-to-end workflows. With the advances of
LLMs, fully automated EDA has gained stronger capabilities: tools
such as the ChatGPT Data Analyst plugin [39] can now effectively
automate the entire EDA pipeline, and recent works further enable
better alignment with user intent [33, 73] as well as more compre-
hensive insight discovery [34, 71]. However, these approaches still
face key limitations: they rely on explicit user intent, analyze entire
datasets inefficiently, and fail to generate visualizations that effec-
tively support reasoning [7, 22]. Therefore, our work attempts to
build an intelligent agent that leverages knowledge from existing
notebooks to better handle these challenges.

2.3 Insight Generation from Visualizations
Statistical Methods. Visualization insight generation is a key com-
ponent of visualization recommendation and composition. Before
the emergence of LLMs, visualization insight generation primarily
relied on statistical methods, which involved designing specific sta-
tistical schemes tailored to particular tasks and visualization types to
identify significant insights [9–11, 50, 61]. With the advent of LLMs
and their code-generation capabilities, reliance on predefined statisti-
cal functions has been reduced, enabling more generalizable insight
generation while alleviating LLM hallucination issues [57, 62, 72].

VLM-based Methods. Moreover, as VLMs have advanced in
visual understanding, generating insights via visualization-to-natural-
language (vis2nl) methods has gained increasing attention [20]. Sev-
eral studies have shown that when VLMs are provided with clearly
labeled and standardized visualizations, they perform well on chart
question tasks [66], chart captioning tasks [32], and visualization
literacy tasks [49]. Recent work also shows that combining data with
its visualization further enhances VLM performance on broader data
analysis tasks [29]. However, hallucination remains a pervasive chal-
lenge, often leading to factual errors or ambiguous semantics [1, 23].
To mitigate this issue, prior studies have explored strategies such as
converting charts into structured tables for consistency checking [21],
and constructing curated chart–caption datasets for fine-tuning [32].

To obtain reliable insights from visualizations in notebooks, we
design a hybrid approach that combines statistical methods and
VLM-based methods, where insights are first extracted using VLMs
and then verified and refined by LLM-generated statistical code.

3 FORMATIVE STUDY

Through interviews with four senior enterprise analysts (each with
over 10 years of experience), we confirmed that such scenarios occur
not only on public platforms but also in enterprise settings, where
multiple notebooks exist for the same or closely related datasets,
and analysts often consult them to guide their work. This reinforced
our belief that RAG could enhance automated EDA. To specify the
design requirements for a RAG-based pipeline, we conducted one-
on-one interviews with 12 master’s and PhD students in data science
who regularly use computational notebooks. The study examined
how they reuse notebooks and interact with automated EDA tools to
identify key design requirements for integrating the two.

3.1 Procedure
The session began by asking participants to recall their past experi-
ences conducting data analysis with notebooks, particularly whether
they reused notebooks created by others. All participants confirmed
doing so, noting that reuse significantly improves their efficiency.
We then provided them with a commonly used Kaggle dataset, a

data mining task, and five highly upvoted notebooks, encouraging
them to browse these notebooks to gain a targeted understanding of
the data. Participants were asked to think aloud during this process,
allowing us to observe how they used them. Next, we introduced the
ChatGPT Data Analyst plugin [39], a representative generative tool
capable of performing automated EDA tasks. Using the same dataset
along with several preset prompts, participants experienced the pro-
cess and results of using the plugin for exploratory data analysis and
were invited to provide comments and critiques. Building on these,
we introduced the concept of RAG, positioning it as analogous to
reusing prior analyses during generation. Finally, we presented our
hypothetical RAG-based pipeline for EDA notebook generation and
engaged participants in identifying concrete design requirements.

3.2 Design Requirements
We summarized the interview recordings and confirmed the design
requirements (DRs) with the participants as follows:

DR1: Goal-Aligned Extraction and Enhancement. When ob-
serving how participants used notebooks, we found that without
prior knowledge of the dataset, it was difficult for them to quickly
distinguish relevant parts. Most reported that reading notebooks
sequentially was time-consuming, and agreed that automatically
filtering potentially useful content would be valuable. Several par-
ticipants (6/12) mentioned that well-documented markdown notes
greatly improved their understanding. All participants acknowledged
that when data became outdated, the factual results in notebooks lost
their validity, leaving only the analytical strategies still applicable,
which reduced the value of existing notebooks. These observations
suggest that the retrieval stage should extract content aligned with
users’ specific analytical goals and enhance it with new data to obtain
updated results and corresponding explanations, thereby improving
the relevance and interpretability of reused content.

DR2: Efficient and Effective Results. Several participants
(5/12) pointed out that GPT’s outputs were “standard but lacked
depth,” often limited to simple visualizations with minimal analytical
insights, which made the initial results frequently unsatisfactory.
Although GPT could be prompted to continue analyzing, this process
was inefficient compared to directly obtaining richer visualizations
that facilitate data understanding. These findings highlight the need
for automatically generated EDA results that, within limited steps,
provide a coherent, comprehensive, and in-depth analytical process
and deliver valuable insights supported by appropriate visualizations.

DR3: Flexibility and Robustness. Several participants (4/12)
with prior RAG experience pointed out that one cannot always expect
valuable information from retrieved notebooks. In particular, they
noted that relevant notebooks may not exist, especially for private
datasets, or that available notebooks may be of low quality. This
highlights the need for a system that can flexibly leverage retrieval
when available while remaining robust and producing reasonable
outputs even when retrieval provides limited or no support.

DR4: Seamless Code Reuse. A majority of participants (9/12)
noted that although GPT’s outputs revealed the code used to gen-
erate visualizations, the code could not be directly modified on the
page. They also pointed out that some code blocks were incomplete,
with parts of the context hidden in memory rather than explicitly
provided, which made reuse inconvenient. Most participants agreed
that producing the final output as an executable notebook would be
a more practical solution, as it allows free modification and continu-
ation of analysis. Therefore, the generated EDA results should take
the form of notebooks, enabling analysts to modify and re-execute
independent code cells for further exploration or downstream tasks.

4 NOTEBOOKRAG
In this section, we first give an overview of NotebookRAG pipeline
and two key steps: notebook retrieval (Fig. 1) and generation (Fig. 3).

4.1 Pipeline Overview

The pipeline takes as input (i) a tabular dataset, (ii) a collection
of notebooks based on different versions of the same underlying
data source, such as annual updates of a company’s revenue dataset,
and (iii) a user intent, expressed in natural language, that specifies
the subsequent data mining task (e.g., building a time-series model
for price prediction), for which the system automatically constructs
corresponding EDA notebooks as a preparatory step (as shown in
Fig. 1-a). The pipeline proceeds in two stages:

Notebook Retrieval. Notebooks are first decomposed into code
cells and markdown cells, since they serve distinct roles: code cells
contain executable logic that produces data transformations and
visualizations, while markdown cells capture human-authored ex-
planations of analytical intent and conclusions. Code cells are trans-
formed into executable components annotated with used columns
and chart types, while markdown cells are converted into embed-
dings (Fig. 1-1). The user intent is mapped into a set of EDA queries
(Fig. 1-b) based on LLMs, which are then used to retrieve relevant
content: queries are matched with markdown embeddings for seman-
tic similarity, their associated columns are used to search candidate
components, and further filtered by chart type (Fig. 1-2) (DR1).
Then, retrieved components are re-executed on the user-provided
dataset, and a VLM extracts task-relevant insights from the resulting
visualizations (Fig. 1-3). These insights are then verified and refined
with LLM-generated statistical code, which corrects factual errors
and clarifies ambiguous statements to yield reliable insights (DR1).

Notebook Generation. We built an agent that automatically
generates EDA notebooks from the dataset and user intent, with an
optional interface to ingest retrieval outputs (DR3). The agent begins
by constructing an EDA plan that specifies the goals and methods
of each step, and then incrementally generates the corresponding
visualizations and insights to produce a coherent, structured, and
runnable notebook (DR4). Incorporating retrieved content enhances
both the planning and generation stages, making the constructed
plans more efficient and effective, the analysis code more in-depth,
and the visualizations more appropriate (DR2).

4.2 Notebook Retrieval

4.2.1 Component Extraction

We define the Component as shown in Fig. 2 as a self-contained,
executable unit with resolved data and environment dependencies.
Each notebook code cell that produces visualizations is transformed
into such a component. This design addresses two key challenges:
(1) understanding the functionality of a single code cell often re-
quires tracing implicit data dependencies and transformations; and
(2) outdated dependencies and disorganized structure can easily lead
to bugs, while debugging in a notebook environment is significantly
less efficient than working with a continuous code block. Consid-
ering the low reproducibility of public notebooks [42], we adopt
a static analysis approach rather than a dynamic one, thereby en-
abling a more general and robust method. Static analysis avoids
execution-time failures caused by missing data or outdated depen-
dencies, which are common issues in public notebooks. Our method
supports both sequential and non-linear notebook executions, with
the latter requiring a complete execution log. In the following, we
describe our method assuming sequential execution.

We first merge code cells that generate visible outputs (e.g., plots
or tables) or are followed by markdown cells with their preceding
non-output cells. To construct components, we introduce the data
variable, which is any variable directly or indirectly derived from
raw data. As illustrated in Fig. 2, data variables follow a lifecy-
cle that includes generation (e.g., S1 creates df, S2 and S4 create
versions of df1), modification (e.g., S3 and S5 update df1), and
downstream usage (e.g., S6 consumes df1 for visualization). We
then track these data-variable dependencies across the notebook in

Markdown Cells Chunks

Components
Components

[used columns,

chart type]

Embeddings

Code Cells

Top-K

Components

Relevant Chunks

Insight 1

Insight 2

Insight 3

split

extract

fix & execute

text embedding search

VLM

Relevant
Components

(with insights)

metadata
annotation

“(EDA to prepare for)

building a time series
model to forecast the

price of avocados.”

Examine AveragePrice by Date to identify seasonal and trend patterns.

Evaluate how type (organic vs conventional) and region affect AveragePrice.

Analyze temporal patterns by year and Date to quantify annual cycles and
potential lag effects on AveragePrice.

Reliable Insight 1

Reliable Insight 1

Reliable Insight 1

N
M

M

 prices are consistently higher
than , above

 across the time series.
roughly $0.3–0.6

M
N

 prices are consistently higher
than by about ,

.
$0.47 with a

95% CI lower bound of $0.459

Insight Refinement

Coder

Refiner

Stats Code

{"delta_mean": 0.47,

"95ci_lower": 0.459}

Component Search Component Enhancement

Output

Input EDA queries

Coder

Used-Column
Matching

comp [A, B]

comp [A, B, C]

comp [B, C]

query → col: [A, B] when: numer > K

Chart Type

Filtering

comp [A, B]

comp [A, B]

comp [A, B]

a

Preprocessing1

2

b

c

3

User Intent

Notebooks

Dataset

Figure 1: Overview of the Notebook Retrieval process. User intent (a) is mapped into EDA queries (b). Notebook markdown cells and code cells
are preprocessed (1) into embeddings and components (with metadata), respectively. Then, the EDA queries are used to search embeddings for
relevant chunks (c) and to guide component search (2) and enhancement (3), producing relevant components (c).

a top-down manner and resolve them at the cell level. Each state-
ment that creates, modifies, or uses a data variable is identified, and
its dependency chain is recursively traced. In this way, we record
for every data variable the complete sequence of statements that
describe its evolution from raw input to its current state (see Data
Variables and Cell Dependencies in Fig. 2). Finally, to construct the
component, we prepend the minimal set of required statements for
the data variables in a target code cell, preserving execution order to
form a self-contained, executable unit.

In practice, we implement this process through an AST-based al-
gorithm, which is robust to real-world complexities such as branches,
loops, and function calls, and leverages a taxonomy of common
data-processing libraries (e.g., pandas) to recognize implicit state
mutations (e.g., method calls like df.drop duplicates()).

4.2.2 Component Metadata Annotation

Given an EDA query (e.g., “evaluate how type affects price”), se-
mantic similarity search often performs poorly because of the se-
mantic gap between natural language and code, the lack of method-
level details, and the fact that many visualization functions (e.g.,
sns.pairplot) reference columns implicitly rather than explic-
itly [15,65]. To improve retrieval precision, we leverage the code un-
derstanding capabilities of LLMs to annotate each code snippet with
the used columns and chart type (provided with dataset column de-
scriptions). Notably, the LLM-based annotation does not rely solely
on explicit variable names. It infers column dependencies based on
the semantic context of the code, such as understanding the effects
of data transformations, thereby maintaining accurate mappings
between queries and transformed variables (Fig. 2-Component).

To evaluate this approach, we manually annotated 840 pairs of
code cells and corresponding components with metadata and com-
pared the labeling accuracy of different models (Tab. 1). For chart
type, all models achieved high accuracy, with little difference be-
tween code cells and components. For used columns, however, we
observed clear improvements when annotating components: across
both SOTA models and smaller models, component-level annotation
consistently outperformed cell-level annotation. The advantage of

Code Cells
Data Variables

Cell Dependencies

Component
C1: Derived Columns C2: Data Transformation

C3: Implicit Column Reference

S1

S2

S3

S4

S5

S6

Dependency Tracking

Generation Dependency

Modification Dependency

Figure 2: Example of the dependency tracking process. Code Cells
define data variables through generation and modification statements.
Data Variables summarize each variable’s lifecycle and dependen-
cies. Cell Dependencies show how variables propagate across cells.
Component collects the required statements into a self-contained unit
that can be executed independently. Some cases where components
improve annotation accuracy (C1, C2, C3).

components comes from preserving complete contextual informa-
tion. We highlight some common cases: (1) the use of previously cre-
ated derived columns (Fig. 2-C1), (2) data transformations applied
upstream (Fig. 2-C2), and (3) visualization methods that implicitly
reference columns without explicitly naming them (Fig. 2-C3).

Practical Note. While gpt-5-nano achieved the best trade-off
between accuracy and efficiency, Qwen-7B offers a practical alterna-
tive for large-scale annotation: when deployed on a single RTX 4090
GPU with 8 threads, it completed all 840 annotation tasks within
one minute.

Table 1: Accuracy of used-column annotation on code cell–component
pairs. ∆ (pp) denotes absolute percentage-point gain; ∆ Rel. (%)
denotes relative improvement.

Model Acc-Code (%) Acc-Comp (%) ∆ (pp) ∆ Rel. (%)

gpt-5 78.1 91.4 13.3 17.1
gpt-5-nano 76.0 89.6 13.6 18.0
Qwen-7B 63.5 74.0 10.5 16.7
CodeL-7B 57.3 68.0 10.7 18.7
DeepSeek-6.7B 58.8 67.5 8.7 14.8

Abbreviations: Qwen-7B = Qwen2.5-Coder-7B-Instruct;
CodeL-7B = CodeLlama-7b-Instruct;

DeepSeek-6.7B = Deepseek-Coder-6.7B-Instruct.

4.2.3 Intent-Guided Retrieval

Since user intent can often be abstract or ambiguous, we adopt an
LLM-assisted exploratory strategy for intent interpretation and re-
trieval (as shown in Fig. 1), inspired by question-guided insight
generation [34]. Specifically, we prompt LLMs with contextual
information such as the dataset description to decompose the intent
into a set of possible EDA queries (as shown in Fig. 1-b), aiming
to cover potentially valuable analytical sub-tasks to enhance the
completeness and diversity of retrieval. Each query specifies target
columns and analytical goals, which are then used to retrieve rele-
vant content from both markdown cells and code components. For
markdown cells, considering the diversity of their content such as
analytical objectives and conclusions as well as their unstructured
narrative forms, we adopt a conventional approach that segments the
text and performs embedding-based similarity retrieval to identify
potentially relevant passages. In particular, markdown content is
excluded when data versions differ, which may lead to outdated
conclusions. For components, we leverage metadata to match
the columns specified in the query: exact matches are prioritized,
followed by partial matches that cover most of the query columns.
If the number of candidates exceeds the top-k (set to five), we fur-
ther filter them by retaining only one component for each unique
combination of used columns and chart type (as shown in Fig. 1-2).

4.2.4 Component Enhancement

Since visualizations in the original notebooks may be invalid due to
outdated data, and some components may contain obsolete code that
prevents direct rerun, we enhance the retrieved components after
top-k selection (Fig. 1-3). Specifically, we provide each component’s
code together with the user’s dataset to a Coder, which executes
the code in a sandbox environment and automatically repairs errors,
thereby producing runnable code and updated visualizations.

Given the strong performance of SOTA VLMs on various vis2nl
tasks [32, 49, 66] and the demonstrated benefits of visual inputs
for data analysis [29], we rely on human-authored visualizations
designed to support analytical reasoning to obtain insights that are
difficult to derive from code or statistics alone. We provide the
user intent and the visualization images to a VLM, which produces
actionable insights [59], which reflect an understanding of the data
and support informed decision-making in real-world contexts.

Considering that VLMs may produce hallucinations leading to
factual errors in insights, or semantic ambiguities due to limited
information in the visualization [20, 57, 69], we introduce a refine-
ment step. Specifically, the Coder generates statistical code based
on the content of the insight to compute precise data facts, and the
Refiner integrates the original insight with these results to correct
errors and clarify ambiguities, ultimately producing reliable insights.
For example, as shown in Fig. 1-3, “Insight 1” initially contained a
factual error (stating N > M instead of M > N) and a vague descrip-
tion (“roughly $0.36–0.6”). After refinement, the factual error was
corrected (M > N), the ambiguity was resolved ($0.47), and addi-
tional information was provided (a 95% CI lower bound of 0.459). A

EDANotebook Progress Manager

EDA Plan

Generation Execute

Execute

Generate

Fix

Fix

Vis Code

Insights

Retrieval

Interface

Update

User Intent

Dataset

Planner Summarizer

Coder

Sandbox Memory
Sub-task

Dispatch

Stats Code

Figure 3: Agent for EDA notebook generation with retrieval interface.
The agent takes user intent, a dataset, and retrieval outputs (optional)
as input. It begins by constructing an EDA plan (Planner), then in-
crementally dispatches sub-tasks (Progress Manager), generates
statistical code and visualization (Coder), and integrates results (Sum-
marizer) to update the plan, ultimately producing a complete EDA
notebook. Retrieval outputs are passed through a retrieval interface
to enhance both planning and code generation.

small-scale manual review further indicated that this refinement pro-
cess effectively mitigates hallucinations by improving both factual
accuracy and interpretive clarity.

4.3 Notebook Generation
As shown in Fig. 3, we build an agent to automatically generate
EDA notebooks, inspired by the design paradigm of intelligent agent
widely adopted in prior work [13, 58, 70], where a high-level plan is
first generated, specialized tools are then invoked to complete sub-
tasks, and global state is maintained through a centralized progress
tracker to ensure coherent execution.

Given a dataset and user intent, the Planner formulates a natural
language EDA plan specifying the goals and methods of each ana-
lytical step. The Progress Manager tracks and updates the plan to
maintain coherence and assigns sub-tasks to the Coder. The Coder
first generates statistical code for the sub-task and executes it to
obtain results, and then uses these results together with the sub-task
descriptions to generate visualization code. All code is executed
in a sandbox environment to ensure robustness and safety, and the
Coder is equipped with memory to preserve continuity across code
fragments generated for different sub-tasks. The Summarizer, also
equipped with memory, organizes the Coder’s outputs into units con-
taining visualizations and actionable insights, and then submits them
to the Progress Manager for updates. Once the plan is completed, the
Progress Manager generates a final summary report together with
recommendations for subsequent tasks and assembles all content
into a coherent EDA notebook.

A key feature of our pipeline is the Retrieval Interface, which
enriches the agent with reusable notebook components, reliable in-
sights, and relevant markdown derived from the Notebook Retrieval
stage (Sec. 4.2). During plan construction, the Planner can ingest
these retrieval outputs as additional context. To support more general
scenarios, we provide resources with descriptions and inform the
Planner that they may refer to them, without explicitly instructing
how to use. This implicit guidance already yields substantial im-
provements in both the efficiency and effectiveness of the generated
plans, as we demonstrate later in the case study (Sec. 5). During code
generation, the Coder selectively reuses validated components based
on their alignment with the sub-task goal and visualization suitability,
while also using them as references when direct reuse is infeasible,
producing visualizations that are closer to human-authored designs.

RAG-Enhanced PlanBBBaseline PlanBA

Figure 4: A: Baseline EDA plan. B: RAG-enhanced EDA plan.

To support traceability and source transparency, whenever com-
ponents are reused, the generated notebook includes links at the
corresponding positions that allow users to jump to the original
notebook context. This enables analysts to inspect the source and
discover potentially useful details such as drill-down analyses.

The retrieval interface is optional. When no existing notebooks
are available, the agent simply proceeds without retrieval and can
still generate complete EDA notebooks. When existing notebooks
are available, the interface is always activated: high-quality note-
books enhance planning and generation, while low-quality or less
relevant notebooks are filtered during the retrieval stage, thus having
limited impact and ensuring the robustness of the overall pipeline.

4.4 Implementation
We use gpt-5-mini for extracting insights from visualizations and gpt-
5-nano for text reasoning and code generation. For semantic retrieval,
notebook markdown cells are encoded using text-embedding-3-large
and indexed with FAISS for similarity search. The overall workflow
is orchestrated with LangChain, enabling modular agent construction
and graph-based control of planning, execution, and summarization.

5 CASE STUDY

In this section, we qualitatively analyze the impact of incorporating
retrieval on notebook generation. We first introduce a concrete usage
scenario to set the stage, and then present several representative cases
that highlight how retrieval affects both the overall EDA workflow
and individual sub-tasks.

Consider an analyst aiming to build a time-series price prediction
model on the Kaggle Avocado Prices (2020) dataset. Before mod-
eling, the analyst wishes to explore the data by consulting existing
notebooks. As this dataset is relatively new and has limited commu-
nity analysis, whereas the earlier Avocado (2018) dataset has been
extensively studied, with many notebooks publicly available. Man-
ually reviewing these notebooks is time-consuming, as the analyst
must re-run them on the new dataset, debug any errors encountered,
and then sift through large amounts of content to identify the parts
that are actually useful. With our system, the analyst only needs
to download several highly upvoted notebooks from the old dataset
and provide them with the new dataset and the user intent (“build a
time-series model to forecast avocado prices”), as inputs. The sys-
tem then generates EDA notebooks under two modes: with retrieval
(RAG-enhanced agent) and without retrieval (baseline agent). Incor-
porating retrieval content improved performance at both the global
level (overall EDA plan) and the local level (individual sub-tasks),
as illustrated by the representative cases below.

Global Level. At the global level, the RAG-enhanced agent gen-
erated plans with clearer analytical priorities. Since LLMs operate
as black boxes, our conclusions about how specific retrieval outputs
influenced the final results are primarily derived from comparative
analysis. For example, when many retrieved insights indicated that
“certain attributes exhibit clear annual seasonality,” the RAG plan
(Fig. 4) prioritized Seasonality and trend diagnostics as an early step
(Step 2), whereas the Baseline plan delayed this analysis until later

Reused ComponentA

RAG-Enhanced Generated VisualizationB

Figure 5: A: a reused human-authored component showing the year-
by-year distributions of features. B: a RAG-enhanced visualization
highlighting anomalies and annotated events in the weekly average
price series.

(Step 3). By introducing this focus earlier, the RAG plan was able
to perform a more fine-grained decomposition of seasonal and trend
patterns within limited steps. Similarly, when retrieved insights
emphasized “anomalies” and “correlations,” the RAG plan explicitly
dedicated sections to Feature relationships and multicollinearity
(Step 4) and Anomalies and outlier handling for forecasting (Step 5).
In contrast, the baseline plan lacked explicit anomaly handling
and only included a simpler correlation analysis in terms of cross-
correlation with supply variables. These enhancements in the RAG
plan not only lead to a more structured and comprehensive workflow
but also provide results that are directly useful for downstream tasks
such as feature engineering in predictive modeling.

Local Level. At the local level, the improvements are reflected
in both the richness and appropriateness of visualization forms and
the depth of analysis. Compared to the baseline, the RAG-enhanced
agent produced more diverse outputs, such as maps, pie charts, and
interactive visualizations. This diversity is enabled by the avail-
ability of reusable components. For example, at the beginning of
the data overview, the Coder chose to reuse a component (Fig. 5-
A) that visualizes the year-by-year distribution across key features.
Through carefully designed, human-authored encodings, this visual-
ization compactly presents multiple distributions in a limited space,
allowing users to quickly obtain an overview of the dataset and
facilitating more efficient exploration. RAG-enhanced agent also
adopted deeper analyses and more suitable presentation forms in cer-
tain cases. For instance, when insights highlighted anomalies such
as “One pronounced anomaly (late-2018/early-2019): price spikes
averaging 2.56 versus 1.38 during non-spike periods, occurring in
low-volume periods” or seasonal fluctuations such as “AveragePrice
shows seasonal fluctuations, rising to a peak price of 3.25 in 2016,
then declining with a -0.02 delta from 2015 to 2018 and -0.07 from
2018 to 2020,” the Planner explicitly instructed the analysis of “gaps”
and defined anomaly points as “weeks where price exceeds the sea-
sonal component by more than 3 × residual std.” Based on these
instructions, the Coder generated statistical code to identify anoma-
lies, and then used these results to produce visualization code that
not only marked the anomaly points but also incorporated appro-
priate annotations, highlighting events such as the late-2018 price

Notebook
Generator

Notebook
Generator

Data Analyst

Plugin

Notebook
Generator

General Ours

EDA Notebook EDA NotebookEDA NotebookEDA Notebook

manual

conversion

1 2 43

Figure 6: Overview of the study design. Four EDA notebooks were
generated for evaluation: (1) using the ChatGPT Data Analyst plugin
with manual conversion to an ipynb file, (2) using the baseline note-
book generator without retrieval, (3) using the baseline generator with
a general retrieval method, and (4) using the baseline generator with
our proposed retrieval method.

spike and the early-2019/2020 price drop (Fig. 5-B). The system
also provided actionable insights, such as “missing-week gaps: en-
force a continuous weekly index and impute with seasonally-aware
methods before ARIMA/LSTM,” which guided the subsequent anal-
ysis and suggested improvements for modeling. This integration of
statistical analysis and visual annotation provides a clearer and more
informative representation of the data patterns.

6 USER STUDY

6.1 Datasets & Materials
To ensure that our user study closely reflects real-world scenarios,
we carefully prepared the experimental materials along three dimen-
sions: datasets, tasks, and notebooks.

Datasets. We selected three commonly analyzed Kaggle datasets
that represent typical scenarios frequently encountered by analysts:
Avocado Prices (continuously updated), Superstore (available in
many versions), and Netflix Movies and TV Shows (continuously
updated). These datasets were chosen because they not only appear
repeatedly in public analysis platforms but also mirror situations
where similar or updated datasets arise in enterprise settings.

Tasks. We provided participants with a description of a data
mining task as their user intent and asked them to evaluate whether
the generated EDA notebooks could help them better prepare for the
task. Because participants might not be familiar with the datasets,
the task was predefined rather than self-formulated, ensuring com-
parable analytical objectives and fairer cross-session evaluation of
retrieval and generation outcomes. To capture different analytical
goals, we included one predictive task and one descriptive task for
each dataset. The tasks were selected based on the most common
analyses observed on these datasets, ensuring that the retrieval mech-
anism would have relevant prior material to draw from.

Notebooks. For each dataset, we collected the top 20 Python
notebooks ranked by upvotes on Kaggle. This selection strategy
aligns with the way users in real scenarios tend to prioritize higher-
quality notebooks, while the number (20) is much larger than what
would normally be examined manually, and also approximates the
number of notebooks realistically available to analysts.

Together, these choices align the study design with realistic ana-
lytical contexts while providing a controlled evaluation setting, using
three datasets with two tasks each.

6.2 Study Design
To systematically evaluate our approach, we generated notebooks
for each dataset-task combination using four methods, with one
notebook produced per method, as illustrated in Fig. 6.

ChatGPT Data Analyst Plugin (ChatGPT). The first notebook
was produced using the ChatGPT Data Analyst plugin. We provided
the user intent (i.e., a data mining task with the explicit goal of
performing EDA to gain targeted understanding) and the dataset,
and asked the plugin to generate a complete EDA process. The

generated process was then converted into an ipynb file, with minor
manual corrections applied to ensure consistency with the origin and
to match the format of notebooks generated by our method.

Baseline Notebook Generator (Baseline). The second notebook
was directly generated by our baseline notebook generator without
using any retrieval, serving as the baseline for comparison.

General Retrieval (RAGBaseline). The third notebook incor-
porated a general retrieval method. Specifically, markdown cells
and code cells from prior notebooks were separately embedded, and
the user intent was used to perform semantic similarity search. The
retrieved content was then passed into the retrieval interface, guiding
the notebook generator to produce the final EDA notebook.

NotebookRAG (Ours). The fourth notebook used our proposed
retrieval method, where retrieved components were passed into
the retrieval interface and integrated into the generation process,
enabling the system to reuse human-authored content and produce
enhanced EDA notebooks.

ChatGPT is a well-established product and is used as a reference
point without extensive prompting. Baseline denotes our genera-
tor without retrieval, which, with engineering on gpt-5-nano, we
estimate to be more powerful than ChatGPT and thus serves as a
stronger baseline and an ablation of our retrieval component. RAG-
Baseline augments Baseline with a general retrieval method, against
which we compare Ours to evaluate the effectiveness of our pro-
posed retrieval approach. To ensure fair comparison, all methods
were constrained by the same moderately relaxed step limit, enabling
evaluation under comparable exploration budgets.

6.3 Methods

We employed a within-subjects design to evaluate the notebooks
produced by the four methods. Unlike data analysis tasks that can
be evaluated using objective metrics such as accuracy [28], objective
measures like the correctness of generated visualizations [18] can-
not comprehensively assess the overall quality of EDA. Therefore,
following most prior studies on automated EDA [33, 34, 73], we
adopted human evaluation and further extended existing evaluation
dimensions based on the identified design requirements. Participants
received the materials and rated in a questionnaire consisting of 13
statements, as is shown below, each corresponding to an evalua-
tion dimension. The quality sub-dimensions were designed by two
external experts to ensure impartiality. Responses were collected
using a five-point Likert scale ranging from strongly disagree to
strongly agree. In addition, participants were encouraged to provide
justifications or think-aloud comments for each rating.
Overall Dimensions. (1) Confidence: I am confident in the validity
and reliability of the analysis. (2) Helpfulness: The EDA is helpful
in exploring the data and supports me effectively in understanding it.
(3) Satisfaction: The analysis meets my expectations and leaves me
satisfied with its overall quality and usefulness. (4) Quality: N/A
(This dimension is not measured by a single scale but is computed
as the average of the ten quality sub-dimensions.)
Quality Sub-dimensions. (1) Task Alignment: The analysis closely
aligns with the stated data mining task and research goals. (2) Data
Comprehension: The notebook demonstrates a thorough understand-
ing of the dataset, including missing values, outliers, and data quality
issues. (3) Coverage: The exploration covers a sufficient range of
variables and their relationships (univariate, bivariate, multivariate).
(4) Visualization: The visualizations are appropriate, clearly pre-
sented, and helpfully support interpretation. (5) Methodology: The
statistical methods used are suitable, clearly explained, and prop-
erly interpreted. (6) Insight: The notebook generates meaningful
and non-trivial insights beyond simple descriptive summaries. (7)
Robustness: The analysis identifies and discusses potential biases,
anomalies, or limitations in the data. (8) Narrative: The narra-
tive and explanations are coherent, logical, and easy to follow. (9)
Reproducibility: The notebook is reproducible, with clear code,

documented steps, and environment/dependency specifications. (10)
Efficiency: The analysis is efficient and concise, avoiding redun-
dancy while maximizing insight.

Evaluations were conducted under natural conditions, with a
reasonable time limit of three days but without further restrictions or
supervision. To minimize bias, we employed a blinding procedure.
Participants were unaware of the study’s purpose or our work and
were instructed to evaluate only the four notebooks provided. The
notebooks were formatted similarly (see supplementary material),
preventing participants from inferring their origin and ensuring a
fair comparison focused on quality. Although the notebooks were
anonymized, the order of presentation in the material folder could
influence the sequence in which participants read them. To control
for order effects, we applied a balanced Latin square design to
counterbalance the notebook order. This design required at least
four participants for each dataset-task combination. Consequently,
we recruited 24 participants across the six combinations in our study.

To further validate the fine-grained performance of our approach,
two co-authors conducted objective checks on the notebooks gen-
erated by Ours, examining both the coverage of task-relevant key
variables and the correctness of the generated analytical insights.

6.4 Participants
Because the study focused on notebook quality, participants were
required to have at least three years of data analysis experience and
to have conducted analyses regularly (at least once per month in
the recent past). All participants were also required to be frequent
computational notebook users. Recruitment was conducted via peer
recommendations on social media to ensure appropriate qualifica-
tions, which were further validated through examination of their
qualitative feedback. One participant exhibited weak reasoning,
prompting us to recruit an additional participant as a replacement.
The final dataset consisted of evaluations from 24 participants.

6.5 Results
Since the code output was already run and displayed as in shared
notebooks, several participants mentioned that they just read the
content. However, most participants still executed the notebook cells
themselves. Among them, some ran only a few cells to verify the
outputs before reading, others executed all cells, and some modified
the code for further exploration. In terms of reading behavior, some
participants first navigated the notebook using the “outline” function
in their environment and jumped to sections of interest, while others
read sequentially. Many noted that even though their task was
merely to evaluate notebook quality, the way they interacted with the
notebooks closely mirrored how they would use them if they were
genuinely conducting EDA, such as reusing code directly, checking
intermediate outputs, or merely exploring insights. This behavioral
alignment supports the representativeness of our participant group.

The ratings of the four notebooks are shown in Fig. 7. Each
bar shows the mean rating across participants. To handle within-
subjects variables, we estimated 95% confidence intervals using
the Cousineau-Morey method [8, 36]. Pairwise Wilcoxon signed-
rank tests with Holm-Bonferroni correction were applied to assess
significance. We conducted all the six pairwise tests, resulting in
slightly conservative significance estimates.

Across the four overall dimensions, Ours consistently and sig-
nificantly outperforms the other three notebooks. As overall scores
provide a high-level summary, participants often reiterated similar
rationales within the corresponding sub-dimensions. Due to space
constraints, we focus directly on the most relevant sub-dimensions,
presenting representative quotes and discussing the key mechanisms
underlying the observed improvements. To avoid redundancy, we
exclude ChatGPT due to its uniform inferiority across dimensions.
• Task Alignment. Participants consistently highlighted that Ours

showed strong task alignment and analytic depth, noting it

“defined objectives early” and “adhered closely to prediction
goals.” They felt it “fully addressed the task of comparing cat-
egory/subcategory sales and profits, forming a complete chain”,
making it the most aligned among the four notebooks (regarding
one of the tasks), in contrast to Baseline being “generic” and RAG-
Baseline sometimes “lacking connection to decision scenarios.”
This is further supported by our objective check, which confirmed
that Ours covered all task-relevant key variables.

• Visualization. Ours offered “diverse and well-matched chart types”
and annotations that made interpretations “clearer and easier to
follow.” Several noted that it conveyed “more information with-
out being unreadable.” They also appreciated that Ours avoided
readability problems seen elsewhere, such as heatmaps being “dis-
torted by extreme values.” (Baseline) or messy lineplots under
extreme values (RAGBaseline). Participants further praised Ours
for matching visuals to analytic goals, using nested donut charts,
faceted scatterplots, and annotated time-series, making it the most
effective among the four, even if some charts (e.g., percentage
plots or the t-SNE) required more effort to digest. The effective-
ness stemmed from referencing visualization designs in existing
notebooks, which better align with human analytical reasoning.

• Methodology. Baseline relied heavily on descriptive statistics and
was repeatedly described as “mentioning ANOVA without proper
explanation,” lacking hypothesis testing or deeper inference. RAG-
Baseline offered a “coherent workflow” with some time-series
checks and proportioning or bucketing methods, though its statis-
tical validation remained limited. In contrast, Ours incorporated
richer techniques such as “bootstrap and regression analysis” and
“decomposition and autocorrelation diagnostics,” which partici-
pants felt addressed the sub-problems more directly. Ours was
consistently seen as applying more advanced and appropriate
methods than the other notebooks. This is because the retrieved
content provided relevant analytical examples, enabling the LLM
to select and apply more appropriate statistical methods.

• Insight. Ours was consistently praised for offering “deeper and
more meaningful insights,” often supported by “specific num-
bers” such as percentage breakdowns or correlations, and fur-
ther strengthened by “actionable recommendations.” Participants
noted that it moved beyond surface observations to examine un-
derlying causes, identify fine-grained scenarios, and provide in-
terpretations “closely tied to decision-making.” In comparison,
Baseline was frequently described as “shallow,” offering largely
descriptive summaries such as “organic prices are higher,” while
RAGBaseline supplied numerical evidence but remained “descrip-
tive” and lacked concrete strategies. Ours stood out for producing
more useful insights. In addition, our objective correctness check
identified a low rate of factual inconsistencies (8/319) across all
notebooks generated by Ours. This is largely attributed to the
agent’s autonomous ability to analyze and adjust its reasoning,
leading to more refined and decision-oriented insights.

• Reproducibility. On reproducibility, the study revealed no signifi-
cant differences for Ours. Our intention was to ensure the codes
executed normally so participants could assess their quality, mak-
ing this outcome more a reflection of externally designed scales
than of differences. Nevertheless, we retain this sub-dimension to
demonstrate that our pipeline produces notebooks that run reliably.

• Efficiency. Participants frequently praised Ours for having “no
redundant content,” offering “richer insights with less repetition,”
and achieving the “highest information density.” Baseline was
often described as “too detailed and repetitive.” While RAGBase-
line was seen as relatively concise, its insights were sometimes
lengthy without focus. Ours most effectively condensed analysis
while still exploring multiple perspectives and maximizing insight
value. It results from the agent’s global state management ability,
allowing it to maintain context and eliminate redundant analysis.

*
*

*
**

*
**

**
*

*

** ***
**

**

**
**

**
* ***

**
**

*

*
**

*
**

**
*

Quality Confidence Helpfulness Satisfaction TaskAlignment DataCompr. Coverage Visualization Methodology Insight Robustness Narrative Reproducibility Efficiency

0

1

2

3

4

5

6
S

co
re

ChatGPT Baseline RAGBaseline Ours

Figure 7: Evaluation results of the four notebooks. Error bars show 95% confidence intervals computed using the Cousineau-Morey method.
Asterisks indicate statistical significance (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001) from pairwise Wilcoxon signed-rank tests with Holm-Bonferroni
correction. For clarity, only significant comparisons between Ours and other notebooks are shown.

In summary, the quality of Ours has been substantially enhanced
by the improved RAG-based pipeline, enabling analyses that are
more closely aligned with user intent and more insightful in interpre-
tation. The visualizations are more appropriate to the analysis, both
visually and methodologically. However, the most frequent negative
feedback on Ours was that its charts were sometimes unnecessarily
complex, which could potentially induce cognitive overload. We will
return to this issue in the discussion section. We further analyzed
the results within each dataset–task subset using participant-level
pairwise score differences (see supplementary materials). Across
datasets and tasks, Ours consistently achieved higher scores, indicat-
ing robust performance.

7 DISCUSSION AND CONCLUSION

Constraints on the Methods in Comparative Evaluation. Chat-
GPT is designed as an interactive interface, but for a fair comparison
with Ours, we adopted a fixed prompt template to ensure end-to-end
generation, which inevitably constrained its capabilities. Therefore,
our experimental conclusions only demonstrate that under this con-
straint, Ours performs better. In addition, since no prior work was
directly comparable, the design of RAGBaseline combined an ex-
isting retrieval scheme originally developed for question answering
with our Baseline. This may introduce potential unfairness, as the
retrieval strategy is not fully tailored to downstream EDA tasks.

Infeasibility in Simulating Enterprise Scenarios. Enterprises
with data analysis needs represent a potential application scenario for
our system. However, the inaccessibility of internal data and artifacts
prevented direct evaluation in this scenario. In our experimental
design, we attempted to approximate enterprise settings through
dataset choices, such as using continuously updated datasets and
those with multiple versions. However, differences remain compared
with real-world enterprise practice, such as the format of notebooks
and the nature of specific tasks. In future work, we aim to collaborate
with enterprises to conduct more realistic evaluations in this scenario,
where analyses are often deeply coupled with proprietary business
logic and contextual knowledge that agentic coding approaches may
lack, thereby better highlighting the value of our method.

Possible Influence of Datasets and Tasks. While we examined
the advantages of Ours within the corresponding subsets, we recog-
nize the possibility that interactions may exist between datasets/tasks
and our method. To account for this, we attempted to fit a mixed-
effects linear model that included these interaction terms. As noted
in Sec. 6.5, the estimates were not sufficiently robust to report, given
the limited sample size. Nonetheless, inspection of the point esti-
mates reveals some deviations from zero, suggesting slight perfor-
mance variations across datasets or task types, but these coefficients
are considerably smaller than the main effect of our method.

Scalability and Generalizability of the System. When the num-
ber of notebooks is large and their quality varies, we propose pre-
filtering notebooks based on their quality and relevance to the user
intent. Previous works have considered multiple criteria, including

format [43, 46], reproducibility, executability [44], and understand-
ability [14]. Our small-scale tests suggest that SOTA LLMs align
more closely with human evaluation, and thus we consider using
LLMs to assess these criteria, as well as the relevance to the user’s
intent. For selected notebooks, static code analysis could be used
to identify and exclude those with syntax errors or incomplete code.
Since our method does not have strict requirements for markdown
content and treats it as plain text, low-quality markdown would not
affect the system’s ability to operate properly. We acknowledge
that existing notebooks may not always fully address users’ con-
cerns or maintain high quality. However, because our retrieval is
based on used-column matching rather than semantic similarity, it
avoids introducing large amounts of irrelevant content, even when
related material is scarce. Small-scale tests on niche tasks further
showed that our method performs at least as well as the Baseline
and RAGBaseline. When no relevant notebooks are available or the
dataset is non-tabular format, the baseline generator can still produce
reasonable results, though this is not the primary focus of our work.

Possible Over-reliance on Existing Corpora. Feedback from the
user study indicated that notebooks produced by Ours sometimes
included overly complex charts. This was likely because highly
upvoted Kaggle notebooks may use elaborate designs to attract
attention, although such cases were infrequent. Since some partici-
pants appreciated high-information-density visualizations, we plan
to adapt our generation strategy in future work based on assessments
of visualization complexity and users’ visualization preferences.

Execution Efficiency. Compared with Baseline, Ours requires
additional time in the retrieval stage. Since components are indepen-
dent, we employ a parallel strategy that keeps the processing time
for about twenty notebooks (roughly 300 components) within three
minutes. The main bottlenecks lie in leveraging the VLM for insight
extraction and in code debugging. Given that generating a complete
EDA notebook (with twelve sub-tasks) typically takes around ten
minutes, the retrieval cost remains within an acceptable range. Given
that generating a complete EDA notebook (with twelve sub-tasks)
typically takes around ten minutes, and the system is designed as an
offline assistant, the retrieval overhead remains acceptable.

Insight Generation. In the Component Enhancement stage
(Sec. 4.2.4), we adopted a strategy of first extracting insights from vi-
sualizations and then refining them with statistical code, which helps
mitigate hallucinations from VLMs. Theoretically, this approach
better leverages the strengths of visualizations in revealing patterns;
however, our current evaluation is limited to a small-scale manual
review and is not yet comprehensive. We acknowledge that this
pipeline may introduce a potential confirmation bias, as the statisti-
cal verification is performed based on the insights initially proposed
by the VLM. In future work, we plan to address this limitation by
exploring alternative designs, such as generating and comparing
multiple competing hypotheses from the same visualization or ex-
plicitly incorporating falsification-oriented statistical tests. We also
aim to conduct a more systematic evaluation of how this two-stage
reasoning process influences both reliability and interpretability.

ACKNOWLEDGMENTS

This work was supported by the Natural Science Foundation of
China (NSFC No. 62472099).

REFERENCES

[1] M. Augustin, Y. Neuhaus, and M. Hein. Dash: Detection and
assessment of systematic hallucinations of vlms. arXiv preprint
arXiv:2503.23573, 2025.

[2] O. Bar El, T. Milo, and A. Somech. Atena: An autonomous system
for data exploration based on deep reinforcement learning. In Proceed-
ings of the 28th ACM International Conference on Information and
Knowledge Management, pp. 2873–2876, 2019.

[3] O. Bar El, T. Milo, and A. Somech. Automatically generating data
exploration sessions using deep reinforcement learning. In Proceedings
of the 2020 ACM SIGMOD international conference on management
of data, pp. 1527–1537, 2020.

[4] A. Cardoso, J. Leitão, and C. Teixeira. Using the jupyter notebook as
a tool to support the teaching and learning processes in engineering
courses. In The Challenges of the Digital Transformation in Educa-
tion: Proceedings of the 21st International Conference on Interactive
Collaborative Learning (ICL2018)-Volume 2, pp. 227–236. Springer,
2019.

[5] S. Chattopadhyay, Z. Feng, E. Arteaga, A. Au, G. Ramos, T. Barik, and
A. Sarma. Make it make sense! understanding and facilitating sense-
making in computational notebooks. arXiv preprint arXiv:2312.11431,
2023.

[6] S. Chattopadhyay, I. Prasad, A. Z. Henley, A. Sarma, and T. Barik.
What’s wrong with computational notebooks? pain points, needs, and
design opportunities. In Proceedings of the 2020 CHI conference on
human factors in computing systems, pp. 1–12, 2020.

[7] J. Chen, J. Wu, J. Guo, V. Mohanty, X. Li, J. P. Ono, W. He, L. Ren,
and D. Liu. Interchat: Enhancing generative visual analytics using
multimodal interactions. In Computer Graphics Forum, p. e70112.
Wiley Online Library, 2025.

[8] D. Cousineau et al. Confidence intervals in within-subject designs: A
simpler solution to loftus and masson’s method. Tutorials in quantita-
tive methods for psychology, 1(1):42–45, 2005.

[9] D. Deng, A. Wu, H. Qu, and Y. Wu. Dashbot: Insight-driven dashboard
generation based on deep reinforcement learning. IEEE Transactions
on Visualization and Computer Graphics, 29(1):690–700, 2022.

[10] D. Deutch, A. Gilad, T. Milo, and A. Somech. Explained: explanations
for eda notebooks. Proceedings of the VLDB Endowment, 13(12):2917–
2920, 2020.

[11] R. Ding, S. Han, Y. Xu, H. Zhang, and D. Zhang. Quickinsights: Quick
and automatic discovery of insights from multi-dimensional data. In
Proceedings of the 2019 international conference on management of
data, pp. 317–332, 2019.

[12] K. Eckelt, K. Gadhave, A. Lex, and M. Streit. Loops: Leveraging
provenance and visualization to support exploratory data analysis in
notebooks. IEEE Transactions on Visualization and Computer Graph-
ics, 2024.

[13] A. Fourney, G. Bansal, H. Mozannar, C. Tan, E. Salinas, F. Niedtner,
G. Proebsting, G. Bassman, J. Gerrits, J. Alber, et al. Magentic-one: A
generalist multi-agent system for solving complex tasks. arXiv preprint
arXiv:2411.04468, 2024.

[14] M. M. Ghahfarokhi, A. Asadi, A. Asgari, B. Mohammadi, M. B.
Rizi, and A. Heydarnoori. Predicting the understandability of com-
putational notebooks through code metrics analysis. arXiv preprint
arXiv:2406.10989, 2024.

[15] X. Gu, H. Zhang, and S. Kim. Deep code search. In Proceedings of the
40th international conference on software engineering, pp. 933–944,
2018.

[16] G. Harrison, K. Bryson, A. E. B. Bamba, L. Dovichi, A. H. Binion,
A. Borem, and B. Ur. Jupyterlab in retrograde: Contextual notifications
that highlight fairness and bias issues for data scientists. In Proceedings
of the 2024 CHI Conference on Human Factors in Computing Systems,
pp. 1–19, 2024.

[17] A. Head, F. Hohman, T. Barik, S. M. Drucker, and R. DeLine. Manag-
ing messes in computational notebooks. In Proceedings of the 2019

CHI Conference on Human Factors in Computing Systems, pp. 1–12,
2019.

[18] M. Helali, Y. Luo, T. J. Ham, J. Plotts, A. Chaugule, J. Chang, P. Ran-
ganathan, and E. Mansour. Reliable and cost-effective exploratory
data analysis via graph-guided rag. In Proceedings of the 2025 Con-
ference on Empirical Methods in Natural Language Processing, pp.
16547–16564, 2025.

[19] J. Huang, D. Guo, C. Wang, J. Gu, S. Lu, J. P. Inala, C. Yan, J. Gao,
N. Duan, and M. R. Lyu. Contextualized data-wrangling code genera-
tion in computational notebooks. In Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering, pp.
1282–1294, 2024.

[20] K.-H. Huang, H. P. Chan, Y. R. Fung, H. Qiu, M. Zhou, S. Joty, S.-F.
Chang, and H. Ji. From pixels to insights: A survey on automatic chart
understanding in the era of large foundation models. IEEE Transactions
on Knowledge and Data Engineering, 2024.

[21] K.-H. Huang, M. Zhou, H. P. Chan, Y. R. Fung, Z. Wang, L. Zhang, S.-F.
Chang, and H. Ji. Do lvlms understand charts? analyzing and correcting
factual errors in chart captioning. arXiv preprint arXiv:2312.10160,
2023.

[22] M. Hutchinson, R. Jianu, A. Slingsby, and P. Madhyastha. Llm-
assisted visual analytics: Opportunities and challenges. arXiv preprint
arXiv:2409.02691, 2024.

[23] M. S. Islam, R. Rahman, A. Masry, M. T. R. Laskar, M. T. Nayeem,
and E. Hoque. Are large vision language models up to the challenge of
chart comprehension and reasoning? an extensive investigation into the
capabilities and limitations of lvlms. arXiv preprint arXiv:2406.00257,
2024.

[24] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, et al. Jupyter
notebooks–a publishing format for reproducible computational work-
flows. In Positioning and power in academic publishing: Players,
agents and agendas, pp. 87–90. IOS press, 2016.

[25] D. J.-L. Lee, D. Tang, K. Agarwal, T. Boonmark, C. Chen, J. Kang,
U. Mukhopadhyay, J. Song, M. Yong, M. A. Hearst, et al. Lux: always-
on visualization recommendations for exploratory dataframe work-
flows. arXiv preprint arXiv:2105.00121, 2021.

[26] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, et al. Retrieval-
augmented generation for knowledge-intensive nlp tasks. Advances in
neural information processing systems, 33:9459–9474, 2020.

[27] L. Li and J. Lv. Unlocking insights: Semantic search in jupyter note-
books. arXiv preprint arXiv:2402.13234, 2024.

[28] S. Li, Y. Liu, S. Du, W. Zeng, Z. Xu, M. Zhou, Y. He, H. Dong,
S. Han, and D. Zhang. Jupiter: Enhancing llm data analysis capabilities
via notebook and inference-time value-guided search. arXiv preprint
arXiv:2509.09245, 2025.

[29] V. R. Li, J. Sun, and M. Wattenberg. Does visualization help ai under-
stand data? arXiv preprint arXiv:2507.18022, 2025.

[30] X. Li, Y. Wang, H. Wang, Y. Wang, and J. Zhao. Nbsearch: Semantic
search and visual exploration of computational notebooks. In Proceed-
ings of the 2021 CHI Conference on Human Factors in Computing
Systems, pp. 1–14, 2021.

[31] X. Li, Y. Zhang, J. Leung, C. Sun, and J. Zhao. Edassistant: Support-
ing exploratory data analysis in computational notebooks with in situ
code search and recommendation. ACM Transactions on Interactive
Intelligent Systems, 13(1):1–27, 2023.

[32] J. Lim, J. Ahn, and G. Kim. Chartcap: Mitigating hallucination of
dense chart captioning. arXiv preprint arXiv:2508.03164, 2025.

[33] P. Ma, R. Ding, S. Wang, S. Han, and D. Zhang. Demonstration of
insightpilot: An llm-empowered automated data exploration system.
arXiv preprint arXiv:2304.00477, 2023.

[34] A. Manatkar, A. Akella, P. Gupta, and K. Narayanam. Quis: Question-
guided insights generation for automated exploratory data analysis.
arXiv preprint arXiv:2410.10270, 2024.

[35] T. Milo and A. Somech. Deep reinforcement-learning framework for
exploratory data analysis. In Proceedings of the first international
workshop on exploiting artificial intelligence techniques for data man-
agement, pp. 1–4, 2018.

[36] R. D. Morey et al. Confidence intervals from normalized data: A

correction to cousineau (2005). Tutorials in quantitative methods for
psychology, 4(2):61–64, 2008.

[37] M. Mostafavi Ghahfarokhi, A. Asgari, M. Abolnejadian, and A. Hey-
darnoori. Distilkaggle: A distilled dataset of kaggle jupyter notebooks.
In Proceedings of the 21st International Conference on Mining Soft-
ware Repositories, pp. 647–651, 2024.

[38] G. J. Myatt and W. P. Johnson. Making sense of data II: A practi-
cal guide to data visualization, advanced data mining methods, and
applications, vol. 2. John Wiley & Sons, 2009.

[39] OpenAI. Data analyst plugin on chatgpt. https://chat.openai.
com, 2023. Accessed: 2023-10-01.

[40] Y. Ouyang, L. Shen, Y. Wang, and Q. Li. Noteplayer: Engaging com-
putational notebooks for dynamic presentation of analytical processes.
In Proceedings of the 37th Annual ACM Symposium on User Interface
Software and Technology, pp. 1–20, 2024.

[41] J. M. Perkel. Why jupyter is data scientists’ computational notebook
of choice. Nature, 563(7732):145–147, 2018.

[42] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire. A large-scale
study about quality and reproducibility of jupyter notebooks. In 2019
IEEE/ACM 16th international conference on mining software reposito-
ries (MSR), pp. 507–517. IEEE, 2019.

[43] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire. Understanding
and improving the quality and reproducibility of jupyter notebooks.
Empirical Software Engineering, 26(4):65, 2021.

[44] L. Quaranta. Assessing the quality of computational notebooks for a
frictionless transition from exploration to production. In Proceedings of
the ACM/IEEE 44th International Conference on Software Engineering:
Companion Proceedings, pp. 256–260, 2022.

[45] L. Quaranta, F. Calefato, and F. Lanubile. Kgtorrent: A dataset of
python jupyter notebooks from kaggle. In 2021 IEEE/ACM 18th In-
ternational Conference on Mining Software Repositories (MSR), pp.
550–554. IEEE, 2021.

[46] L. Quaranta, F. Calefato, and F. Lanubile. Pynblint: a static analyzer
for python jupyter notebooks. In Proceedings of the 1st International
Conference on AI Engineering: Software Engineering for AI, pp. 48–49,
2022.

[47] A. Rule, A. Tabard, and J. D. Hollan. Exploration and explanation in
computational notebooks. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, pp. 1–12, 2018.

[48] A. Sarvghad, M. Tory, and N. Mahyar. Visualizing dimension coverage
to support exploratory analysis. IEEE transactions on visualization
and computer graphics, 23(1):21–30, 2016.

[49] Z. Shao, Y. Shan, Y. He, Y. Yao, J. Wang, X. Zhang, Y. Zhang, and
S. Chen. Do language model agents align with humans in rating
visualizations? an empirical study. IEEE Computer Graphics and
Applications, 2025.

[50] B. Tang, S. Han, M. L. Yiu, R. Ding, and D. Zhang. Extracting top-k
insights from multi-dimensional data. In Proceedings of the 2017
ACM international conference on management of data, pp. 1509–1524,
2017.

[51] Y. Tian, C. Zhang, X. Wang, S. Pan, W. Cui, H. Zhang, D. Deng, and
Y. Wu. Respark: Leveraging previous data reports as references to
generate new reports with llms. In Proceedings of the 38th Annual
ACM Symposium on User Interface Software and Technology, pp. 1–18,
2025.

[52] E. Tufino. Notebooklm: An llm with rag for active learning and
collaborative tutoring. arXiv preprint arXiv:2504.09720, 2025.

[53] J. W. Tukey et al. Exploratory data analysis, vol. 2. Springer, 1977.
[54] A. Y. Wang, D. Wang, J. Drozdal, X. Liu, S. Park, S. Oney, and

C. Brooks. What makes a well-documented notebook? a case study
of data scientists’ documentation practices in kaggle. In Extended
Abstracts of the 2021 CHI Conference on Human Factors in Computing
Systems, pp. 1–7, 2021.

[55] F. Wang, Y. Lin, L. Yang, H. Li, M. Gu, M. Zhu, and H. Qu. Outlines-
park: Igniting ai-powered presentation slides creation from computa-
tional notebooks through outlines. In Proceedings of the 2024 CHI
Conference on Human Factors in Computing Systems, pp. 1–16, 2024.

[56] F. Wang, X. Liu, O. Liu, A. Neshati, T. Ma, M. Zhu, and J. Zhao.
Slide4n: Creating presentation slides from computational notebooks
with human-ai collaboration. In Proceedings of the 2023 CHI Confer-

ence on Human Factors in Computing Systems, pp. 1–18, 2023.
[57] F. Wang, B. Wang, X. Shu, Z. Liu, Z. Shao, C. Liu, and S. Chen.

Chartinsighter: An approach for mitigating hallucination in time-series
chart summary generation with a benchmark dataset. arXiv preprint
arXiv:2501.09349, 2025.

[58] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and
A. Anandkumar. Voyager: An open-ended embodied agent with large
language models. arXiv preprint arXiv:2305.16291, 2023.

[59] H. W. Wang, L. Birnbaum, and V. Setlur. Jupybara: Operationalizing
a design space for actionable data analysis and storytelling with llms.
arXiv preprint arXiv:2501.16661, 2025.

[60] J. Wang, L. Li, and A. Zeller. Better code, better sharing: on the need
of analyzing jupyter notebooks. In Proceedings of the ACM/IEEE
42nd international conference on software engineering: new ideas and
emerging results, pp. 53–56, 2020.

[61] Y. Wang, Z. Sun, H. Zhang, W. Cui, K. Xu, X. Ma, and D. Zhang.
Datashot: Automatic generation of fact sheets from tabular data. IEEE
transactions on visualization and computer graphics, 26(1):895–905,
2019.

[62] L. Weng, X. Wang, J. Lu, Y. Feng, Y. Liu, H. Feng, D. Huang,
and W. Chen. Insightlens: Augmenting llm-powered data analysis
with interactive insight management and navigation. arXiv preprint
arXiv:2404.01644, 2024.

[63] J. Wenskovitch, J. Zhao, S. Carter, M. Cooper, and C. North. Albireo:
An interactive tool for visually summarizing computational notebook
structure. In 2019 IEEE visualization in data science (VDS), pp. 1–10.
IEEE, 2019.

[64] K. Wongsuphasawat, Y. Liu, and J. Heer. Goals, process, and chal-
lenges of exploratory data analysis: An interview study. arXiv preprint
arXiv:1911.00568, 2019.

[65] T. Wu, S. Wang, and X. Peng. Autoeda: Iterative data focusing and
exploratory analysis based on attribute frequency. In 2024 IEEE In-
ternational Conference on Systems, Man, and Cybernetics (SMC), pp.
4113–4118. IEEE, 2024.

[66] Y. Wu, L. Yan, L. Shen, Y. Wang, N. Tang, and Y. Luo. Chartin-
sights: Evaluating multimodal large language models for low-level
chart question answering. arXiv preprint arXiv:2405.07001, 2024.

[67] L. Xie, C. Zheng, H. Xia, H. Qu, and C. Zhu-Tian. Waitgpt: Monitoring
and steering conversational llm agent in data analysis with on-the-fly
code visualization. In Proceedings of the 37th Annual ACM Symposium
on User Interface Software and Technology, pp. 1–14, 2024.

[68] C. Yan and Y. He. Auto-suggest: Learning-to-recommend data prepa-
ration steps using data science notebooks. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, pp.
1539–1554, 2020.

[69] Z. Yang, L. Li, K. Lin, J. Wang, C.-C. Lin, Z. Liu, and L. Wang. The
dawn of lmms: Preliminary explorations with gpt-4v (ision). arXiv
preprint arXiv:2309.17421, 9(1):1, 2023.

[70] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao.
React: Synergizing reasoning and acting in language models. In
International Conference on Learning Representations (ICLR), 2023.

[71] Y. Zhao, J. Wang, L. Xiang, X. Zhang, Z. Guo, C. Turkay, Y. Zhang,
and S. Chen. Lightva: Lightweight visual analytics with llm agent-
based task planning and execution. IEEE Transactions on Visualization
and Computer Graphics, 2024.

[72] Y. Zhao, Y. Zhang, Y. Zhang, X. Zhao, J. Wang, Z. Shao, C. Turkay,
and S. Chen. Leva: Using large language models to enhance visual
analytics. IEEE transactions on visualization and computer graphics,
2024.

[73] J.-P. Zhu, B. Niu, P. Cai, Z. Ni, J. Wan, K. Xu, J. Huang, S. Ma,
B. Wang, X. Zhou, et al. Towards automated cross-domain ex-
ploratory data analysis through large language models. arXiv preprint
arXiv:2412.07214, 2024.

https://chat.openai.com
https://chat.openai.com

	Introduction
	Related Work
	Computational notebook
	Automating EDA
	Insight Generation from Visualizations

	Formative Study
	Procedure
	Design Requirements

	NotebookRAG
	Pipeline Overview
	Notebook Retrieval
	Component Extraction
	Component Metadata Annotation
	Intent-Guided Retrieval
	Component Enhancement

	Notebook Generation
	Implementation

	Case Study
	User Study
	Datasets & Materials
	Study Design
	Methods
	Participants
	Results

	Discussion and Conclusion

